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Collaborating Investigators & Partners 
 

 

UCSD School of Medicine 

 Family & Preventive Medicine, Pediatrics, Medicine, Psychiatry & Emergency Medicine 

 

Kevin Patrick, MD, MS, Fred Raab, Linda Hill, MD, MPH, Jacqueline Kerr, PhD 

Jeannie Huang, MD, MPH, Cheryl Rock, PhD, James Sallis, PhD, James Fowler, PhD, 

Lucila Ohno-Machado, MD, PhD, Richard Garfein, PhD, Ted Chan, MD, Cinnamon Bloss, PhD 

  

UCSD Jacobs School of Engineering & The Qualcomm Institute 

Bill Griswold, PhD, Ingolf Krueger, PhD, Tajana Rosing, PhD, Sanjoy Dasgupta, PhD, 

Yannis Papakonstantinau, PhD, Emilia Farcas, PhD, Nadir Weibel, PhD, Jessica Block, MS 

Deborah Forster, PhD 

 

San Diego Supercomputer Center SDSU School of Public Health 

Chaitan Baru, PhD, Natasha Balac, PhD Elva Arredondo, PhD, Gregory Talavera, MD, MPH 

 

PhD students and Post-doctoral Fellows (current) 

Laura Pina, Ernesto Ramirez, Gina Merchant, Maggie Crawford, Marta Jankowska, PhD 

Yannis Katsis, PhD, Max Menarino, PhD, Job Godino, PhD,  

d by: Funde



Research on systems of wireless, clinical, and  

home technologies to measure and improve health-related 

exposures and behaviors in: 
 -- Healthy adolescents 

 -- Overweight and obese children and adults 

 -- Depressed adults  

 -- Adolescents risk for type 2 diabetes 

 -- Adolescents with chronic disease (e.g. cystic fibrosis or IBD) 

 -- Older adults to promote successful aging 

 -- Adolescents recovering from leukemia 

 -- Young adults to prevent weight gain 

 -- Adults with schizophrenia 

 -- Exposure biology & environmental health research 

 -- Cancer comparative effectiveness research  

 -- Individuals with TB in need of directly observed Rx 

Center for Wireless and Population Health Systems 
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Health, Behavioral  

& Social Sciences 

Design 

Wireless  

 Technologies 

 and Ubiquitous 

 computing & data 

 

• Medical care 

• Public health 

• Personal health 

• Social Networks 

• Tracking 

• Goals 

• Reminders 

• Rewards 

• Tailoring 

• Preference-based 

• Attentive 

• Ecological 

• Context Aware 

• Gamified  

• Cybernetic 

• Mobile phone apps 

• SMS/MMS 

• Mobile video 

• Body area networks 

• Wearable sensors 

• Ecosystem  

   of external sensors 

   (home, work, etc.) 

• Cloud computing 

• Social networks 

• Server analytics, 

   data mining  

• Cog Sci 
• Media/Comm 
• Beh Sci 
• Soc Sci 
• Hum/Comp 
     Interaction 
 

Areas of research 
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Farhad Manjoo, Jan 21, 2016 



Major influences 

  on health 



CitiSense 

Always-on Participatory Sensing for Air Quality 

PI: UCSD, CSE 

Five Co-PIs 

8 
Cyber-Physical Systems Program, NSF, 0932403 
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Impact of Environmental Exposure 

  Asthma events are 50% higher near highways 

 30% of public schools are near highways 

 350,000 – 1,300,000 respiratory events in children annually 

 Diesel exhaust  Carcinogen (WHO/IARC, 2012) 

 Peak exposure Cardiac events, increased hospitalizations 

USA Today, 10/1/2009 
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Current State of Air Quality Monitoring 

3.1M residents 

 EPA requires local agencies to monitor air quality for 

their region 

 Required number of sensors, monitored pollutants are based 

on region size, population, regional issues 

10 monitoring sites for San Diego County 
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EPA 

CitiSense 

 
 

 

 

 

contribute 

distribute 

Participatory Sensing of the Environment 
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CitiSense Smartphone App 
Air Pollution Sensor 

Back-end Server 

CO, NO2, O3, 

Humidity, 

Pressure, Temp 

Upload 

Measurements 

12 

CitiSense: System Overview 
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User Study of Individual Exposure 

 Conducted a month-long user study (Spring 2012) 

 16 users (two groups of eight users each) 

 Recruited from the UCSD community 

 Students, faculty, and staff 

 Variety of commuting methods: car, bus, bicycle, motorized 

scooter, trolley, and train 

 Commute at least 20 minutes each direction 

 

 Each user was asked to carry a provided smartphone and 

CitiSense sensor everyday 

 Compensated $75 for time, travel costs at conclusion 
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Individual Exposure vs. Regional Summary 

Good 

Unhealthy 

Unhealthy  

for  S.G. 

Moderate 

March 15th, 2012 
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Data Enables Finer Grained Maps 

Simple interpolation 

(using standard geostatistical kriging 

techniques) 
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CitiSense findings varied 

considerably from those  

provided by official EPA  

estimates (via EPA website) 

Applying geostistical 

krieging techniques allows 

CitiSense to infer a  

regional map with greater  

detail than official summaries 

(Best Paper, Wireless Health, 2012) 



Major influences 

  on health 



PI: 1 individual 

Co-Is: 2 individuals 

2013-2017  



“Health happens where we live,  

learn, work and play.” 



Randomized controlled trials 

EMRs Biomarkers 

Traditional Health Research 

Surveillance 





Wearable devices for tracking health-related states 



Social Networks 

Facebook:  

156 Million Daily Users in US 

1.55 Billion worldwide 

(Q3, 2015) 



The Internet of Things 



An increasingly diverse & expanding ecosystem of devices, 

 apps, and services generating vast amounts of data… 



Personal Data and Health 

• New paths for reflection and self-improvement

– Healthy behaviors and lifestyles

• New connections with clinical care

– Mobile health applications

– Monitoring & intervening on chronic disease

• New health knowledge from aggregate data

– Public health surveillance

– Health research



Issues (some) 

• Research Methods (design, data, scale, etc.)

• Data Quality (validity, reliability)

• Representativeness of Data

• Data ownership & Terms of Use

• Privacy

• Ethics & Informed Consent

• Cultural differences (.com, .edu, .gov, .org)

• Dynamic nature of personal health data environment



Health Research Data Comparison 
Clinical Data Personal Data 

Clinical Research Study Context of Collection Everyday Life 

Expensive Cost per Observation Cheap 

Validated Measurement Trueness Unvalidated 

Tuned to Research Qs Data Specificity General Purpose 

Standardized Comparability Unstandardized 

Comprehensive Completeness Erratic 

Personal, Clear Informed Consent Mediated, Questionable 

Definable Ethical Issues Ambiguous 

Highly Regulated Confidentiality Varies Widely 

Low Risk of Identification Anonymity Larger Risk of Identification 

Contrived Ecological Validity Lived Experience 

Periodic Pace of Observation Continuous 

Self-report Behavior, Mood, Exposome Sensed 



Report Available at: 

hdexplore.calit2.net 



Building a Network 

• Funded by Robert Wood Johnson Foundation 
in Fall, 2014 

• Network of innovators in PHD to catalyze the 
use of personal data for the public good 

– Companies, researchers, and strategic partners 

• Annual meetings, webinars, workshops, etc. 

 

Info at: hdexplore.calit2.net 



Health Data Exploration Network 
Key Advisors & Steering Committee, 2015-2017 



Validity,  
Reliability 

METHODS AND  
METRICS FOR PHD 

UTILITY AND 
SAFETY OF PHD 

REPRESENTATIVENESS OF PHD 

Quality, Access,  
Perceptions,  

Attitudes 

CATALYZE USE  
OF PHD 

Ethics, Privacy, 
 Consent,  

Terms of Use 

Program Office Core Research Areas  



Technology Adoption 

• Tends to be unevenly distributed in society 

• Different communities will have different 
patterns of use 

– Access, usefulness, and usability 

– Perceptions of risks and benefits 

– Personal and collective motivations 

• Influenced by a variety of social, economic, 
technological, and cultural factors 

 



Eric Fischer / Mapbox 
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METHODS AND  
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UTILITY AND 
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Perceptions,  
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OF PHD 
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Validity & Reliability of  

Personal Health Data Derived from 

Consumer-level Wearable Devices: 

A Scoping Review 

Project Leader: PhD 

Research Associate, UC San Diego 

Member HDE Core Team 

Program Office Core Research Areas 



Background 



Challenge to Assess Validity 

• Engineering specifications of sensors are difficult to find 

• How sensors are utilized is often proprietary and 
secretive 

• Extent to which design and materials influence 
measurement is unknown 

• Process of bringing new models to market is outpacing 
independent evaluation   

• No universal criteria for judging methodological rigor of 
studies    

 

 



HDE Network 
Agile Research Projects 

• Small proof-of-concept, demonstration, or 
pilot projects: $25k-$75k, < 6 months 

• Advance use of PHD for Research 

• Leverage two or more network members 

• Research teams will communicate regularly 

• Results presented at Network Webinars  

• Outcomes shared as openly as possible 



Agile Research Project #1  

When Am I At My Best? – Passive Sensing of Circadian Rhythms for 
   Individualized Models of Cognitive Performance 
 
PhD, U. of Washington 
Tanzeem Choudhury, PhD, Cornell 
 
Use smartphone data to capture interaction patterns, web use &  
   sleeping behaviors 
Conduct a 3-week feasibility study 
Model trends in reports of cognitive performance & measured 
   reaction times 

 



Agile Research Project #2  

From Self-monitoring to Self-experimentation: Behavior Change 
   in Patients With Multiple Sclerosis 
 
PhD, PatientsLikeMe 
PhD, Arizona State University 
PatientsLikeMe 
 
Determine current status of using wearable devices for managing 
   Multiple Sclerosis with emphasis on self-customization 
Develop a “Wearables 101” course for MS patients 
Pilot test the course among a group of patients & refine as needed 



Major influences 

  on health 



Social Mobile Approach to Reduce Weight 

NIH/NHLBI U01 HL096715; PI 

MD, MS and PhD 



Protocol 



“User-centered” Intervention 

Website 
Facebook 

Email 

Smart- 
phone 
Apps 

Other Tools 
Bathroom Scale & 
Pedometer 

Be sure to check 

your email for this 

this week’s topic 

from 

ThreeTwoMe 

Text Messages 

Health Coach +  
Virtual Facetime 
Via phone & online chat 



“State of the Science” Theory 

Core Behavior Strategies 

Intention Formation 

Goal Setting 

Goal Review 

Feedback on Performance 

Self-monitoring 

Theoretical Principles 

Social Cognitive Theory 

Ecological Theory 

Social Network Theory 

Theories of Operant Learning 

Theories of Tailored Health 
Communications 

Self Regulation Theory 

Behavioral Choice Theory 

Michie et al., 2009, 2011 



Suite of Apps 

Mobile Apps 

APP TARGET BEHAVIORS & STRATEGIES 

  
Self-

Monitoring 
Intention 

Formation 
Goal- 

Setting 
Goal 

Review 
Feedback Knowledge 

Be Healthy X X X   

TrendSetter X X X X 

Goal Getter X X X   

Facts & 
Quizzes 

X X 

All apps accessible via  

 Mobile 

 Website 

 Facebook 

Copyright, Regents of the University of California, 2014 



Facebook Page 

• Christina – “The Health
Coach”

• # of “Likes” overall

• # of “Likes” per post

• # of Impressions

• % feedback on the post

• Video on National Food
Day



Design 

404 university students, 18-35 years old,   
25 < BMI < 34.9 kg/m2 

Inclusion Criteria 
 Owns a personal computer 
 Owns a mobile phone and uses text messaging 
 Facebook user or willing to start using Facebook 

n = 202 
Control 

n = 202 
Treatment 

Campus n 

SDSU 182 

UCSD 164 

CSUSM 58 

Total 404 



202 
76.5 

74.6, 78.5 
Control 

Intervention 

n 
Mean 

95% CI  

n 
Mean 

95% CI  

196 
76.8 

74.8, 78.7 

193 
76.8 

74.9, 78.8 

183 
76.9 

74.9, 78.8 

179 
77.6 

75.6, 79.6 

202 
76.5 

74.6, 78.5 

185 
75.4 

73.5, 77.4 

184 
75.5 

73.6, 77.5 

164 
76.2 

74.2, 78.2 

162 
76.8 

74.8, 78.5 

Results: weight (kg) 



Subgroups 
• Sex
• Age
• Ethnicity
• Engagement

Weight-related 
• % change in weight
• % who lost at least 5%
• % who lost at least 3%
• % who did not gain weight
• % who did not gain more than 3%

Metabolic and Anthropometric 
• Blood pressure
• Heart rate
• Waist Circumference
• Arm Circumference

Behavioral 
• Physical activity
• Sedentary behavior
• Diet
• Sleep

Psychological 
• Quality of life
• Depression
• Body image
• Self-esteem

Psychosocial 
• Intentions
• Self-efficacy
• Social support
• etc…

Facebook and Social Networks 

Additional Analyses 



Facebook and Social Networks 

• We have friendship data on 315
participants

• 114 (36%) participants are friends with at
least one other participant

• There are 214 friendships between study
participants (179 friendships when lost to
follow-up are excluded)

• Degree summary statistics (# of other
participants each participant is connected
to):

- Mean = 2.4 
- Median = 2 
- Range = 1 - 11 Basic Network Picture 



Facebook and Social Networks 

Network Picture by Condition 
Yellow = Control | Purple = Intervention 



Does being in a weight-loss trial affect how much you talk 
about healthy living with your online social network? 

• Create a Healthy-Active-Lifestyle (HAL) dictionary to flag posts 
as reflecting purposeful exercise and/or healthy eating 

• Restricted to outgoing posts made by participant  

• Quantify the # of HAL posts / total # of posts over study 
period 

• Test whether treatment group has more HAL than control and 
whether engagement with study tools increases HAL 

Facebook and Social Networks 



Does HAL Facebook activity predict weight loss? Does being 
connected to another participant who lost weight predict 
weight loss? 

• Quantify the amount of social support for HAL on Facebook: 
1. Likes, comments to HAL posts made by participants 

2. HAL posts from friends  

• Quantify engagement with the ThreeTwoMe Facebook page 

• Quantify # of study friends who lost weight 

• Test whether engagement with the ThreeTwoMe page and 
receiving online social support for HAL predicts weight loss 
after adjusting for other tool use 

Facebook and Social Networks 



How does social network position, connectedness, and 
network structure affect weight loss efforts? 

• Use individual (e.g., centrality) and network level (e.g., 
density) variables to describe the SMART network  

• Test how individual and network variables are related to 
weight-related outcomes and behaviors 

Facebook and Social Networks 



Major influences 

  on health 

Connecting 

 the  

 dots…. 



Data  e-Platform to Leverage 
Multilevel Personal Health Information 

NSF 1237174, 

Information & 

Intelligent 

Systems 

PI  

Co-PIs and Investigators 



Multiple sources of health-relevant data 

59 

S
A

N
D

A
G

 

Medical Records Personal Health Data 
(weigh-ins, run info, …) 

Genomic Data 

Environmental Data 
(pollution, noise, greenspace, …) 

Public Health &  

Social Determinants Data 

Microbiome Data 



Providing health care & population health 

requires reasoning across these layers 

  Physical activity      Sleep       Social Networks         Stress     Diet   

 Medical Records     Genomic     Pharmaceutical             BMI 

 Food & Grocery      Pollutants    Transportation    Crime & Incivilities 

Personal 

Medical 

Data 

Behavioral & 

Social 

Data 

Environmental 

Data 

Diabetes 

Management 

Asthma 

Care 

Obesity tracking for 

public health 



Runkeeper Runtastic 

Nike+ Jawbone Fitbit 

Today: Most health data are either ignored 

or are functionally unavailable 

Fitbit Withings 23andMe 

McKesson Meditech 

Cerner 

MyFitnessPal Fooducate 

Twitter Facebook 

Physical Activity Data 

Social Data 

Nutritional Data 

Weight Data 

Medical Record Data 

Genomic Data 

Air Pollution 

Control District 

Environmental 

Protection Agency 

Air Quality Data 

  Reasons: 

 Data are collected and maintained by different entities 

○ Making it hard to find and access them 

 Data have different data types 

○ Making it hard to combine them 



Partners 

DELPHI: The Goal 

Enable personalized population health through the creation of a “Whole 

Health Information Platform” that takes into account everything from 

the genome to the exposome – essentially all health-relevant data 

 Integrate heterogeneous data into a “single” uniform database 

○ By taking into account the geospatial context 

 Implement an analytics and visualization layer on top 

 Open data and analytics to 3rd-party developers of apps & services  



DELPHI System Architecture 

W 
H 
A 
P 
I 

I 
N 
T 
E 
R 
F 
A 
C 
E 

DELPHI 

BEACON Health 

Info Exchange 

Medical 

Records* 

Qualcomm Life 
Personal 

Sensor Data* 

3rd party 

web-services 

Location Data* Smartphone 

WHOLE HEALTH 

INFORMATION 

MODEL 

(WHIM) 

Genomic 

Data 

Environmental 

Data 

ANALYTICS 

VISUALIZATION 

Patient/Parent App 

Medical Personnel 

Individual’s Dashboard 

Integrated 

view of 

patient 

+ feedback 

Feedback, alert & 

advice 

Medical Personnel 

Population Dashboard 

Population 

statistics & 

analytics 

Other New Applications 

WHIM: 

Models multi-

level data 

ANALYTICS LAYER: 

Allows developers to 

run common 

analytics efficiently 

Sources DELPHI Applications 

INTERFACE: 

Allows source 

owners to register 

their sources 
WHAPI: Allows 

developers to access all 

integrated health data and 

write apps that use them 

Goal: Create ecosystem 

for developers to create 

the next generation of 

health applications 

VISUALIZATION LAYER: 

Allows developers to 

create common 

visualizations efficiently 



Use Case: Asthma 

Environmental Data 

Personal (Sensor) Data 

Patient/Parent 

App 

Medical Personnel 

Individual’s Dashboard 

Medical Records 

Hospitalization, 

Age, 

Flu shot 

Activities, 

Peak Flow, 

Self Report 

Air quality, 

County health 

DELPHI 

Integrated view 

of patient 

+ feedback 

Probability of danger 

(machine learning 

algorithms) + contact 

to doctor 

Medical Personnel 

Population Dashboard 

Population 

statistics 

PALMS 



Use Case: Asthma App 



Health 

Systems 

Social & Economic 

Conditions 

Physical & Social 

Environment 

Individual 

Behaviors 

Public 

Policies 

Transportation to Work 

Air Pollution Traffic 

Drinking Water Violations Crime Rate 

Near busy 

Roadways 

Access to 

Healthy Food 

Pesticides 

Near Open 

Space 

Highschool Graduation 

Children in Poverty 

Income Inequality 

Marital Status 

Unemployment 

Rate 
Housing Problem 

Overcrowding 

Uninsured 

Immunization 

Status 

Diabetic 

Screening 

Activity 

Diet 

Stress 

Sleep 

Shelter Services 

Financial Aid 

Life Expectancy 

Smoking 

Asthma 

Diabetes 

Cancer 

Heart Disease 

Alzheimer’s Disease 

… 

Big Data & A Culture of Health 
SDHHSA, VCU & UCSD; supported by the Robert Wood Johnson Foundation 

Use Case: Find correlations (and new causal relationships?) between and 
among different health-related variables using machine learning and other 
big data analytic strategies 



Big Data & A Culture of Health 
SDHHSA, VCU & UCSD; supported by the Robert Wood Johnson Foundation 

Use Case: Find correlations (and new causal relationships?) between and 
among different health-related variables using machine learning and other 
big data analytic strategies 

Community Design Team 

 Data Visualization mtg 9/30/15 

Calit2/QI 



Research Challenges  

Addressed in the DELPHI Project 

 Data Integration & Analytics in Novel Settings: 

 New data types
○ e.g. spatiotemporal data, genomic data

 Dynamic environments
○ e.g. new sources & new applications join the system

 Modeling this process in a defined geographical area
○ Use cases relevant to personal and population health

DELPHI 



modeling  

in defined 

location 

Our approach is to model access to as much health-related information as we can 

gather in San Diego County, Calif. Population 3.2 Million, 4000 Sq Miles 

Research Challenges: 

In Novel Settings 



Thank You! 

cwphs.ucsd.edu 
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