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Collaborating Investigators & Partners ( ( PHS )

CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

UCSD School of Medicine

Family & Preventive Medicine, Pediatrics, Medicine, Psychiatry & Emergency Medicine

Kevin Patrick, MD, MS, Fred Raab, Linda Hill, MD, MPH, Jacqueline Kerr, PhD
Jeannie Huang, MD, MPH, Cheryl Rock, PhD, James Sallis, PhD, James Fowler, PhD,
Lucila Ohno-Machado, MD, PhD, Richard Garfein, PhD, Ted Chan, MD, Cinnamon Bloss, PhD

UCSD Jacobs School of Engineering & The Qualcomm Institute

Bill Griswold, PhD, Ingolf Krueger, PhD, Tajana Rosing, PhD, Sanjoy Dasgupta, PhD,
Yannis Papakonstantinau, PhD, Emilia Farcas, PhD, Nadir Weibel, PhD, Jessica Block, MS
Deborah Forster, PhD

San Diego Supercomputer Center SDSU School of Public Health
Chaitan Baru, PhD, Natasha Balac, PhD Elva Arredondo, PhD, Gregory Talavera, MD, MPH

PhD students and Post-doctoral Fellows (current)
Laura Pina, Ernesto Ramirez, Gina Merchant, Maggie Crawford, Marta Jankowska, PhD

Yannis Katsis, PhD, Max Menarino, PhD, Job Godino, PhD,
ATIONAL
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Center for Wireless and Population Health Systems ( ( PHS )

CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

Research on systems of wireless, clinical, and
home technologies to measure and improve health-related

exposures and behaviors in:
-- Healthy adolescents
-- Overweight and obese children and adults
-- Depressed adults
-- Adolescents risk for type 2 diabetes
-- Adolescents with chronic disease (e.g. cystic fibrosis or IBD)
-- Older adults to promote successful aging
-- Adolescents recovering from leukemia
-- Young adults to prevent weight gain
-- Adults with schizophrenia
-- Exposure biology & environmental health research
-- Cancer comparative effectiveness research
-- Individuals with TB in need of directly observed Rx
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Areas of research ( PHS

CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

* Mobile phone apps
* SMS/IMMS
* Mobile video
* Body area networks
* Wearable sensors
* Ecosystem
of external sensors
(home, work, etc.)
* Cloud computing
» Social networks
 Server analytics,

Wireless
Technologies

and Ubiquitous
computing & data

Health, Behavioral
& Social Sciences

* Medical care
* Public health
* Personal health

* Social Networks datamining
* Tracking N
. Goal§ * Cog Sci
* Reminders + Media/Comm
* Rewards e Beh Sci
* Tailoring e Soc Sci
* Preference-based . Hum/Comp
* Attentive Interaction
* Ecological
* Context Aware
* Gamified

* Cybernetic —_



Ehe New Nork Times

Farhad Manjoo, Jan 21, 2016

Technology

Tech’s ‘Frightful 5° Will Dominate Digital Life for

Foreseeable Future

By just about every metric, Amazon, Apple, Facebook, Google and
Microsoft are getting larger, more entrenched in their own sectors,
more powerful in new sectors and better protected from competition.
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Impact of

Environmental Exposure
EPA finds toxin in air outside 15 schools

| By Blake Morrison and Brad Heath industries appear to saturate the ai. ~ §chools Wlth acrolein
USA TODAY The preliminary results are meant to .t e aizt )
i 'wis Elem * Santa Anita Chris- * Charles Russell
[ help determine only whether stu- "\ Birmingha tian Academy Elementa
Outside 15 schools in eight states, dents face any immediate dangers ® North Bifmingham El Monte, Calif, Asmm.&
" | government regulators have found el-  from toxic chemicals. The EPA will use Elementar, L = Felton Elementary *Crabbe
| evated levels of a sub- additional tests to evalu- Birmingham, Ala Lennox, Calif. Ashland, Ky.
| stance that — in a more ate long-term health risks. * Riggins v » Soto Street * Hatcher
| potent form — was also The chemical that once ';"’“‘""E‘]"‘ 5 Vif FElementary Ashland, Ky.
{ | used as a chemical weap- was weaponized, acrole- g i Los Angeles
§ | on during World War | in, can exacerbate asthma  ——————
A | Those findings, based and irritate the eyes and S :]P‘“" § ] Ererprise g ‘ Intermediate gl Whitwell Chicora
on samples collected for throat. It is a byproduct of W R e it i i s
the Environmental Pro- burning gasoline, wood Detroit Miss. Gty Ohio Heights, 5.C.

| | tection Agency (EPA),
A | mark the first time the

for toxic chemicals in the air outside
\ 63 schools nationwide.

The monitoring is part of a
| $2.25 million program that began in
response to a USA TODAY investiga-

| tion that identified hundreds of
| schools where chemicals from nearby
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and " cigarettes, and its
presence at so many sites

done to reduce the amount of acrolein
the American people, especially chil-
dren, are exposed to."

At the 15 schools — in Alabama,
California, Kentucky, Michigan, Mis-
sissippi, New York, Ohio and South
Carolina — regulators found average

30% of public schools are near highways

350,000

Source: Environmental Protection Agency

August at Spain Elementary School in
Detroit. On Wednesday, the 830 stu-
dents at Spain were paying homage to
the late Michael Jackson when Princi-
pal Ronald Alexander heard about the

By Ron Coddinton. USA TODAY

| agency has expressed .- was not explained. EPA acrolein levels atleast 100 times high-  cern,” he said of the acrolein levels,
concern about the chem- Toxic air and spokesman Brendan Gil- er than what the government consid- ~ Alexander said he sometimes sends
2 | icals it detected as part of America’s schools  fillan said the initial read- ers safe for long-term exposure., asthmatic students across the street
an ongoing effort to check ings show “more mustbe  The highest level was recorded in to the Children's Hospital of Michigan.

Despite 13 years as principal, Alexan-
der said “we didn't really know any-
thing about (the air quality) ... until
they started this monitoring." The

findings trouble him, he said, and he

et SR 1 b 24 [ %é?)& 10172009

» Asthma events are 50% higher near highways

1,300,000 respiratory events in children annually
» Diesel exhaust = Carcinogen (WHO/IARC, 2012)

» Peak exposure—> Cardiac events, increased hospitalizations



Current State of Air Quality Monitoring

10 monitoring sites for San Diego County

10



Participatory Sensing of the Environment
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CitiSense: System Overview
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User Study of Individual Exposure

» Conducted a month-long user study (Spring 2012)

|6 users (two groups of eight users each)

» Recruited from the UCSD community
Students, faculty, and staff

Variety of commuting methods: car, bus, bicycle, motorized
scooter, trolley, and train

Commute at least 20 minutes each direction

» Each user was asked to carry a provided smartphone and
CitiSense sensor everyday

Compensated $75 for time, travel costs at conclusion



Individual Exposure vs. Regional Summary
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CitiSense: Improving Geospatial Environmental
Assessment of Air Quality Using a Wireless Personal
Exposure Monitoring System

Nima Nikzad, Makul Verma, Celal Ziftci, Elizabeth Bales, Michole Quick®, Piero Zappi,
Kevin Patrick’, Sanjoy Dasgupta, Ingolf Krueger, Tajana Slmumc Rosing, William G. Griswold
Department of Computer Science and Enginssering, "Schoal of Medicine
Univeraity of California, San Diego
La Jolla, CA 82083-0404

nnikzad@cs_ucsd.edu

ABSTRACT

Eovironmental exposmes are a crtical component im the
development of chromic conditions such as asthma apd cancer.
Yet, medical and public health practifioners typically must depend
on sparse regional measurements of the environment that provide
mare-scale summaries. Fecent projects have bepun fo measure
an individual's exposure to these factors, often wtlizing body-
worn sensors and mobile phones to visualize the data. Swoch data,
collected from mamy individuals and analyzed across an entire
eopraphic region, bolds the potential to revohutionize the practice
of public health

We present CifiSense, a participatory air quality sensing system
that bridges the gap berween persomal semsing and regiomal
measurement to provide micro-level detad at a repgonal scale. In
a mser study of 16 commuters using CHiSense, measurements

mamﬂmmwmmmmmm
official regiomal summaries. These results sugpest that the
cumulative impact of many individuals usng persomal sensing
devices may have an important role to play in the fibore of
environmental measurement for public health

Categories and Subject Descriptors
1.3 [Life and Medical Sciences]: Health

General Terms
Measurement, Expenimentation, Human Factors.

Eevwords

Pompeission to make digifal or bard copies of all or part of this work for
parsanal or classroom use i ankd without foe provided that copies are
not made or distibuted for profit or commencial advantage and that
cderwise, or republish, to post on servers or o redistibu o list,
rRqUires prior specific parmission and'or 2 foe.

Wireless Healsh '12, Month 1-2, 2010, San Diege, CA, USA.
Copyright 2010 ACKM 1-58113-000-0:00/0010. 81000
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1. INTRODUCTION
Undersianding the canse of common disorders such as asthma and
Cancer is necessary in order to lessen the mcidence and burden of
such diseases. While penotyping techmiques have improwed
drastically in recent years, shudying environmental exposures has
lagzed behind For many diseazes, such as colon and breast
cancer, causes are unknown and are likely due to eovironmental
factars [12]. In fact, it is estmated that coly about 10-15% of
disease etiology can be accounted for by genefic factors, with
envirommental factors playing a role im  the
pathogenesiz of many diseasas [13, 14]Bpus|lelua.1rpulhmun
is associated with oumerous adverse health outcomes mchding
increased cardiopulmonary morfality and bospital admissioms,
warsening of asthma sympioms and accelerated cognitive decline
in older women [10. 19-248]. In 2005, Wild proposed the idea of
an "exposome”, which encompasses life-style factors as well as
envirommental exposmes during ope’s life-time [11]. When
smadied along with the genome, understanding the exposome can
pekiinmuc:lnpk!pumnufdmlsemlug]r Howewer,
long-temm w eoviroomental risks has
wmmmm-mmmmm
stady of a population may belp identify locations where

region April I

Figure 6. EPA‘XnMded AQI mp ot theSanDIegoCounty
2012 at 4:40 PM PDT, with a box added to
mark the location of the UCSD campus.

CitiSense findings varied

‘considerably fromthose

provided by official EPA
estimates (via EPA website)

Applying geostistical
krieging techniques allows
CitiSense to infer a

regional map with greater
detail than official summaries

(Best Paper, Wireless Health, 2012)

Figure 7. AQl map gmuted nsmg dah colleded by
CitiSense for the UCSD campus area during a five minute
window on April 16", 2012 at 4:27 PM PST. The boxes
represent pollution reading locations during that window.
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Health Data Exploration Project

Project Director;
Professor, Family and Preventive Medicine, UCSD
Director, Center for Wireless and Population Health Systems, Calitz

Project Co-Director
Chief of Staff, Calit2

Investigators
PhD, Project Scientist, UC Irvine

I PhD, Adjunct Professor, UC Irvine

PhD, Project Scientist, UC Irvine
PhD, Director, Calit2/UCSD

Pl: 1 individual
Co-Is: 2 individuals
2013-2017

L

Robert Wood Johnson Foundation

Personal Data Tor== =
the Public Good

New Opportunities to Enrich Understanding
of Individual and Population Health

FINAL REPORT OF THE HEALTH DATA EXPLORATION PROJECT
FEBRUARY 2013

o, Health Data Exploration project



“Health happens where we live,
learn, work and play.”

Robert Wood Johnson Foundation




Traditional Health Research
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Brazil's economic quagmire

The The theology of jihad
L
E C O n O m l S t America’s oversold manufacturing boom

Venezuela's slow-motion coup

I~ MARCH 6TH 2015 cor Mosquito sex and malaria

Planet of the phones




Offline.

The Apple Watch is just the start.
How wearable tech will change
- your life—like it or not

WY LEV GROSSMAN
AND SAATT VELLA

Wearable devices for tracking health-related states



Social Networks
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The Internet of Things

World

Population 6.3 Billion 6.8 Billion

Connected

Davices 500 Million 12.5 Billion

More
connected

Connected devices
Devices 0.08 than
Per Person

7.2 Billion

25 Billion

((pis

CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

7.6 Billion

50 Billion

6.58

Source. Cisco IBSG. Apnl 2011

2020




An increasingly diverse & expanding ecosystem of devices,
apps, and services generating vast amounts of data...

fitnesquLI:_
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Personal Data and Health

 New paths for reflection and self-improvement
— Healthy behaviors and lifestyles

* New connections with clinical care
— Mobile health applications

— Monitoring & intervening on chronic disease

* New health knowledge from aggregate data
— Public health surveillance
— Health research



Issues (some)

Research Methods (design, data, scale, etc.)

Data Quality (validity, reliability)

Representativeness of Data

Data ownership & Terms of Use

Privacy

Ethics & Informed Consent

Cultural differences (.com, .edu, .gov, .org)

Dynamic nature of personal health data environment




Health Research Data Comparison

Clinical Data

Clinical Research Study
Expensive
Validated

Tuned to Research Qs

Standardized
Comprehensive
Personal, Clear

Definable
Highly Regulated
Low Risk of Identification
Contrived
Periodic

Self-report

Context of Collection
Cost per Observation
Measurement Trueness
Data Specificity
Comparability
Completeness
Informed Consent
Ethical Issues
Confidentiality
Anonymity
Ecological Validity
Pace of Observation

Behavior, Mood, Exposome

Personal Data

Everyday Life
Cheap
Unvalidated
General Purpose
Unstandardized
Erratic
Mediated, Questionable
Ambiguous
Varies Widely
Larger Risk of Identification
Lived Experience
Continuous

Sensed



Health Data Exploration Project

Project Director:
Professor, Family and Preventive Medicine, UCSD

Director, Center for Wireless and Population Health Systems, Calitz

Project Co-Director,
Chief of Staff, Calit2

Investigators
PhD, Project Scientist, UC Irvine

N PhD, Adjunct Professor, UC Irvine

PhD, Project Scientist, UC Irvine
PhD, Director, Calit2/UCSD

Report Available at:
hdexplore.calit2.net

L

Robert Wood Johnson Foundation

,‘;saj;

-

Personal Data for’f
the Public Good |

New Opportunities to Enrich Understanding
of Individual and Population Health

.

FINAL REPORT OF THE HEALTH DATA EXPLORATION PROJECT
FEBRUARY 2013

o, Health Data Exploration project



Building a Network

* Funded by Robert Wood Johnson Foundation
in Fall, 2014

* Network of innovators in PHD to catalyze the
use of personal data for the public good

— Companies, researchers, and strategic partners

 Annual meetings, webinars, workshops, etc.

Info at: hdexplore.calit2.net
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Program Office Core Research Areas

UTILITY AND METHODS AND

SAFETY OF PHD METRICS FOR PHD




Technology Adoption

* Tends to be unevenly distributed in society

* Different communities will have different
patterns of use
— Access, usefulness, and usability
— Perceptions of risks and benefits
— Personal and collective motivations

* Influenced by a variety of social, economic,
technological, and cultural factors



Eric Fischer / Mapbox




Program Office Core Research Areas




Program Office Core Research Areas

Validity & Reliability of
Personal Health Data Derived from
Consumer-level Wearable Devices:

A Scoping Review

Project Leader: PhD
Research Associate, UC San Diego
Member HDE Core Team
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Science Says FitBit Is a Joke

Your smartphone is much more accurate and consistent than wearable devices.

Research Letter | February 10, 2015

Accuracy of Smartphone Applications and Wearable
Devices for Tracking Physical Activity Data

Meredith A. Case, BA'; Holland A. Burwick?; Kevin G. Volpp, MD, PhD?; Mitesh S. Patel, MD, MBA, MS®

Tue Feb. 10, 2015 5:44 PM EST

=

By Jenna McLaughlin
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LJAMA. 2015;313(6):625-626. doi:10.1001/jama.2014.17841. Text Size:
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Snapchat CEO meets
with Saudi investor
Prince Alwaleed bin Talal

All you need to know
about HBO's new HBO
Now streaming service

Apple's take on the
smartwatch: Elegant
evolution

Study says: Don’t buy a fitness
tracker, just use your phane

by Feb. 11, 2015 - 7:38 AM PDT
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Frthlt vs. anes An Explorahun of Phone and Wearable Data

Posted on Febt

PHYS ED

Better Fitness Through Your Phone

IBy GRETCHEN REYNOLDS  FEBRUAR »73C

Like many people paying attention to the press around Quantified Self, self-tracking, and wearable technolog
was intrigued by the many articles that focused on a newly published research letter in the Journal of the

American Medical Association. The letter, Accuracy of Smart  and Wearable Devices for
Tracking Physical Activity Data, authored by Meredith A. Case et al., descnbed a laboratory study that exam
a few different ications and g devices. they tested the accuracy of st
reported by the three different apps: Moves (Galaxy S4 and iPhone 5s), Withings Health Mate (iPhone 5s),
the Fitbit app (iPhone 5s), three wrist-worn devices: Nike Fuelband, Fitbit Flex, and the Jawbone UP24, and
waist-worn devices: Fitbit One, Fitbit Zip, and the Digi-Walker SW-200. Participants walked on a treadmill at
MPH for trials of 500 steps and 1500 steps while a research assistant manually counted the actual steps tak
Here's what they found:

1f-

Figure 1. Device Outcomes for the 500 Step Trials Figure 2. Device Outcomes for the 1500 Step Trials.

No.of

Device Obsarvations Devic Observations
Galaxy 54 Moves App. 7 ] GlaySAMovesop 28 e
1Phone 55 Moves App. 8 e Phone 55 Moves App. » S
1Phone 55 Health Mate App 28 e ProsSihelthMate A 27 et
1Phone 55 Atk App » e Phone 55 Fitit Aop z ey
Nike Fontband » —_— Nike Fuolband » —e—i
Jawbcne UP24 » e lwboneUR24 »
P Flex » —— it Aex »
Fiit One z [} Fabit One %
Fi ip 2 o Fabit 2p z
Digp-Walker SW-200 » . Digr-Walker SW-200 »
I I ) ko 1600 150 2000
Mean No.of Steps Maan No,of Steps

The vertical dotted line depicts the observed step count. The efror bars
indiate +150.

As the data from this research isn't available we're left to rely on the authors description of the data. They st
that differences in observed vs device recorded steps counts “ranged from-0.3% to 1.0% for the pedometer|

Many of us have invested in the wristbands or other wearable

and accelerometers [waist], ~22.7%o -1.5% for the wearable devices [wrist], and -6.7% to 6.2% for smartp|

il > @ www.wired.com/2015/03/fitness-trac Q Search

SUBSCRIBE

BRENT ROSE 12:00 PM

NO, PHONES AREN'T MORE
ACCURATE THAN FITNESS
WEARABLES

Fitness

03.18.15

Trackers vs.

Smartphoges: Why Wearables

Win P




Challenge to Assess Validity

Engineering specifications of sensors are difficult to find

How sensors are utilized is often proprietary and
secretive

Extent to which design and materials influence
measurement is unknown

Process of bringing new models to market is outpacing
independent evaluation

No universal criteria for judging methodological rigor of
studies



HDE Network
Agile Research Projects

Small proof-of-concept, demonstration, or
pilot projects: $25k-S75k, < 6 months

Advance use of PHD for Research
 everage two or more network members
Research teams will communicate regularly

Results presented at Network Webinars
Outcomes shared as openly as possible



Agile Research Project #1

When Am | At My Best? — Passive Sensing of Circadian Rhythms for
Individualized Models of Cognitive Performance

PhD, U. of Washington
Tanzeem Choudhury, PhD, Cornell

Use smartphone data to capture interaction patterns, web use &
sleeping behaviors

Conduct a 3-week feasibility study

Model trends in reports of cognitive performance & measured
reaction times



Agile Research Project #2

From Self-monitoring to Self-experimentation: Behavior Change
in Patients With Multiple Sclerosis

PhD, PatientsLikeMe
PhD, Arizona State University
PatientsLikeMe

Determine current status of using wearable devices for managing
Multiple Sclerosis with emphasis on self-customization

Develop a “Wearables 101” course for MS patients

Pilot test the course among a group of patients & refine as needed
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CENTER FOR WIRELESS &
POPULATION HEALTH SYSTEMS

Social Mobile Approach to Reduce Weight

NIH/NHLBI U01 HL096715; PI
MD, MS and PhD



Protocol

Contents lists available at ScienceDirect

Contemporary Clinical Trials

journal homepage: www .elsevier.com/locate/conclintrial

Design and implementation of a randomized controlled social @mmm
and mobile weight loss trial for young adults (project SMART)

K. Patrick #P*, S.J. Marshall *?, E.P. Davila ®?, ].K. Kolodziejczyk *P<, ].H. Fowler ¢, K. Calfas®,
J.S. Huang ¢, C.L. Rock ®, W.G. Griswold §, A. Gupta? G. Merchant **<, GJ. Norman®®, F. Raab*”,
M.C. Donohue®, BJ. Fogg", T.N. Robinson'

2 Center for Wireless and Population Health Systems (CWPHS), Qualcomm Institute/Calit2, University of California, San Diego, La Jolla, CA 92093-0628, United States
® Department of Family and Preventive Medicine, University of California, San Diego, La Jolla, CA 92093, United States

© Graduate School of Public Health, San Diego State University, San Diego, CA 92182, United States

4 Medical Genetics Division and Political Science Department, University of Califernia, San Diego, La Jolla, CA 92093, United States

® Rady Children's Hospital, San Diego, CA 92123, United States

¥ Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, United States

# Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, United States

® Behavior Design Lab, Human Sciences and Technologies Advanced Research Institute, Stanford University, Stanford, CA 94305, United States

! Division of General Pediatrics, Department of Pediatrics and Stanford Prevention Research Center, Stanford University School of Medicine, Stanford, CA 94305, United States

ARTICLE INFO ABSTRACT

Article history: Purpose: To describe the theoretical rationale, intervention design, and clinical trial of a two-year



“User-centered” Intervention

Website
, Facebook
.' —

\ Text Messages
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Be sure to check

Health Coach + Other Tools EE

Email

from

Virtual Facetime Bathroom Scale &
Via phone & online chat Pedometer |



“State of the Science” Theory EI

Intention Formation

Goal Setting

Theoretical Principles

G O a I REVi eW Social Cognitive Theory
Ecological Theory
FeEd baCk On Performa nce Social Network Theory
Theories of Operant Learning
Self-monitoring Theore of Talred Healt

Michie et al., 2009, 2011 Self Regulation Theory

Behavioral Choice Theory



Suite of Apps

Mobile Apps
APP TARGET BEHAVIORS & STRATEGIES
Self- Intention Goal- Goal
Monitoring Formation Setting Review AeselEEs [ Loeess
Be Healthy X X X
TrendSetter X X X X
Goal Getter X X X
Facts &
. X X
Quizzes

All apps accessible via
v" Mobile

v Website
v’ Facebook

Copyright, Regents of the University of California, 2014
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Scampis | 0

Inclusion Criteria

SDSU 182
v' Owns a personal computer
v' Owns a mobile phone and uses text messaging ucsb o4
v’ Facebook user or willing to start using Facebook CSUSM 58
Total 404

404 university students, 18-35 years old,
25 < BMI < 34.9 kg/m?

n =202 n =202

Control Treatment




Results: weight (kg)

78 -
76 =
74 -
1 1 I || 1
0 6 12 18 24
n 202 196 193 183 179
95%Cl 74.6,78.5 74.8,78.7 74.9,78.8 74.9,78.8 75.6,79.6
n 202 185 184 164 162
-‘- Intervention Mean 76.5 75.4 75.5 76.2 76.8

95%Cl 74.6,78.5 73.5,77.4 73.6,77.5 74.2,78.2 74.8,78.5



Additional Analyses

Subgroups

* Sex

* Age

e Ethnicity

* Engagement

Weight-related

* % change in weight

* % who lost at least 5%

* % who lost at least 3%

* % who did not gain weight

* % who did not gain more than 3%
Metabolic and Anthropometric
* Blood pressure

* Heart rate

* Waist Circumference

e Arm Circumference

Behavioral

* Physical activity

e Sedentary behavior
* Diet

* Sleep
Psychological

* Quality of life

* Depression

* Body image

* Self-esteem
Psychosocial

* Intentions

* Self-efficacy

* Social support

* etc...

Facebook and Social Networks



Facebook and Social Networks

Basic Network Picture

We have friendship data on 315
participants

114 (36%) participants are friends with at
least one other participant

There are 214 friendships between study
participants (179 friendships when lost to
follow-up are excluded)

Degree summary statistics (# of other
participants each participant is connected
to):

- Mean=24
Median = 2
Range=1-11



Facebook and Social Networks
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Network Picture by Condition
Yellow = Control | Purple = Intervention



Facebook and Social Networks &I

Does being in a weight-loss trial affect how much you talk
about healthy living with your online social network?

Create a Healthy-Active-Lifestyle (HAL) dictionary to flag posts
as reflecting purposeful exercise and/or healthy eating

Restricted to outgoing posts made by participant

Quantify the # of HAL posts / total # of posts over study
period

Test whether treatment group has more HAL than control and
whether engagement with study tools increases HAL



Facebook and Social Networks EI

Does HAL Facebook activity predict weight loss? Does being
connected to another participant who lost weight predict
weight loss?

* Quantify the amount of social support for HAL on Facebook:
1. Likes, comments to HAL posts made by participants
2. HAL posts from friends

* Quantify engagement with the ThreeTwoMe Facebook page
* Quantify # of study friends who lost weight

e Test whether engagement with the ThreeTwoMe page and
receiving online social support for HAL predicts weight loss
after adjusting for other tool use



Facebook and Social Networks

How does social network position, connectedness, and
network structure affect weight loss efforts?

e Use individual (e.g., centrality) and network level (e.g.,
density) variables to describe the SMART network

* Test how individual and network variables are related to
weight-related outcomes and behaviors



Connecting
the
dots....

Major influenc
on health

S

\\\\\\\\\




DELPHI

Data e-Platform to Leverage
Multilevel Personal Health Information

Pl
Co-Pls and Investigators

NSF 1237174,
Information &

Intelligent
Systems




Multiple sources of health-relevant data

Delayed

Mincr

Medical Records Personal Health Data Environmental Data
(weigh-ins, run info, ...) (pollution, noise, greenspace, ...

AR OIEG: “':nc AR O A aiicca
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e S‘c&f"‘ﬁ&‘
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Genomic Data Microbiome Data Public Health &
Social Determinants Data



Providing health care & population health
requires reasoning across these layers

Obesity tracking for

public health
Behavioral &
Social Physical activity  Sleep Social Networks Stress Diet
Data
Personal
Medical Medical Records| Genomic Pharmaceutical BMI
Data

Environmental

Data Food & Grocery  Pollutants Transportation Crime & Incivilities

Diabetes Asthma
Management Care



Today: Most health data are either ignored
or are functionally unavailable

Reasons:

e Data are collected and maintained by different entities
o Making it hard to find and access them

e Data have different data types
o Making it hard to combine them

e N N N )
/’ [Em y 5 23andMe
= Facebook  Twitter Withings Fitbit 23andMe
Runkeeper Runtastic _ _
~— Social Data A W6|ght Data — Genomic Data
< L = N N
)2 - —_———
Nike+ Jawbone Fitbit -
McKesson Meditech R
\__ . .. ) -
Physical Activity Data Fooducate  MyFitnessPal R Environmental Air Pollution
- Protection Agency Control District
“—— Nutritional Data ——/
Cerner ~——— Air Quality Data —

- Medical Record Data —



DELPHI: The Goal

Integrate heterogeneous data into a “single” uniform database
o By taking into account the geospatial context

Implement an analytics and visualization layer on top
Open data and analytics to 3'9-party developers of apps & services

Enable personalized population health through the creation of a “Whole
Health Information Platform” that takes into account everything from
the genome to the exposome — essentially all health-relevant data

Partners

QUALCOM -=;EE i \ O O COUNTY OF SAN DIEGO

HEALTH AND HUMAN SERVICES AGENCY




DELPHI System Architecture

ANALYTICS LAYER: ceodback alert &
eedback, alert
Allows developers to advice
— run common /
analytics efficiently Patient/Parent App
BEACON Health
Records* Info Exchange
e ~N I Integrated
| DELPHI . A
= 5 _ — N ® — ool patient
. T | WHOLEHEALTH | T + feedback
I VR - | oo |
; (WHIM) P Individual’s Dashboard
‘ I
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z ' \ @ | @ VisuaLIZATION L : ¥ analytics
Location Data* Smartphone 3533
Medical Personnel
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| A e developers o Other New Applications

( create common Goal: Create ecosystem
{ visualizations efficiently

weveivper o wo uvvous All for developers to create

E -

Environmental Genomic
Data Data

3" party
web-services

integrated health data and the next generation of
write apps that use them health applications

Sources DELPHI Applications



Use Case: Asthma

Air quality,
County health

4 SER ENCY

Environmental Data

Activities,
Peak Flow,
Self Report

\
Personal (Sensor) Data

SAN DIEGO BEACON

€ HEALTH COMMUN'™Y

Hospitalization,

Age,
Flu shot

Medical Records

DELPHI
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Use Case:

= oo @ o i W 1413
= Asthmolicious

ENVIRONMENT

Air Quality Good

Allergens

MEDICATION

@ Schedule

“' Capacity

ACTIVITY

1 Level

¥

EVENTS

Mew Asthma Event

Asthma App

e ve 94

Asthmolicious

Pressure NO2
1004.4 0.0

QDO 'y wiai2

»

R LY.

Humidity

63.0

) y Alr Quality

Good

Asthmolicious

QO U @' w1413

»

Allergens

N
1 Activity

Good !

Submit




Big Data & A Culture of Health

SDHHSA, VCU & UCSD; supported by the Robert Wood Johnson Foundation

Use Case: Find correlations (and new causal relationships?) between and

among different health-related variables using machine learning and other
big data analytic strategies

Uninsured

’ F— Diabetie v Highschool Graduation

Status Screening /
: Children in Poverty

Health // Marital Status
Asthma Systems Income Inequality
Diabetes < Social & Economic
TranSpQrtation to Work \ Cond itionS
Cancer Air Pollutior; Traffic Naqusing Problem Unemployment
Rate
; , . Crime Rate Drinking Water Violations _
Alzheimer’s Disease . . Overcrowding
Physical & Social
Heart Disease Diet EnVirOHment Shelter Services

: Stress
Smoking Access to

L Healthy Food Pu bl iC
IndIVId_Ua| Near Open Policies
Behaviors EE o s

o Near busy Financial Aid
Activity
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Big Data & A Culture of Health

SDHHSA, VCU & UCSD; supported by the Robert Wood Johnson Foundation

Use Case: Find correlations (and new causal relationships?) between and
among different health-related variables using machine learning and other
big data analytic strategies

Community Design Team
Data Visualization mtg 9/30/15
Calit2/Ql




Research Challenges
Addressed in the DELPHI Project

Data Integration & Analytics in Novel Settings:
New data types

o e.g. spatiotemporal data, genomic data

Dynamic environments
o e.g. hew sources & new applications join the system

Modeling this process in a defined geographical area
o Use cases relevant to personal and population health

DELPHI



Research Challenges:
In Novel Settings

modeling
In defined
location

Our approach is to model access to as much health-related information as we can
gather in San Diego County, Calif. Population 3.2 Million, 4000 Sqg Miles
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