Back to Top Skip to main content

The art of moulage

Combat Medic Training program students at the Medical Education and Training Campus at Joint Base San Antonio-Fort Sam Houston conduct an emergency cricothyrotomy on a “casualty” during simulation training. The “wounded” manikin also presents with facial burns that were created with moulage techniques. (DoD photo by Lisa Braun) Combat Medic Training program students at the Medical Education and Training Campus at Joint Base San Antonio-Fort Sam Houston conduct an emergency cricothyrotomy on a “casualty” during simulation training. The “wounded” manikin also presents with facial burns that were created with moulage techniques. (DoD photo by Lisa Braun)

Recommended Content:

Health Readiness

JOINT BASE SAN ANTONIO-FORT SAM HOUSTON, Texas — The saying “train like we fight” is a common idiom in the military training spectrum. As combatants, service members must train for a variety of scenarios that will prepare them to succeed when engaged in real-life conflicts.

Simulation plays an important role in preparing enlisted medical trainees at the Medical Education and Training Campus, or METC, at Joint Base San Antonio-Fort Sam Houston to respond appropriately when faced with an actual life-or-death situation.

For the combat medic trainees in the Department of Combat Medic Training, or DCMT, program who, due to the sheer size and number of classes, will not have an opportunity to see real patients until after they graduate from the program, the realism goes a step further.

The use of high-fidelity human patient simulators that mimic actual patient encounters will prepare Soldier medics with the basic skills that will save lives – on and off the battlefield.

When the training scenario calls for treating casualties with combat wounds or injuries, however, less expensive generic manikins are incorporated and given a makeover to look the part because not many manikins have wounds already on them.

“To better simulate battlefield wounds or injuries our simulation instructors have become moulage artists to make realistic wounds and injuries that give these manikins more realism,” said Donald Parsons, DCMT program director. “This allows the students to actually see and treat wounds they will see on the battlefield, but they can also make their mistakes on the manikin without risking someone’s life.”

These realistic injuries may include an amputation, head and chest gunshot wounds, and other traumas associated with combat injuries. As the combat medic trainees, or Soldier medics as they are called in the training environment, respond to the simulated casualty they are simultaneously reinforcing the skills they learned in the classroom – from a basic injury assessment to more complex wound care.

Camille Espinoza, a civilian DCMT training instructor and simulations technician, heads the process of transforming a generic, low-fidelity manikin into a combat casualty. As an art, moulage is a process of trial and error so Espinoza is always learning new techniques. Her team offers ideas and assists with some of the moulage application.

Espinoza has had to create a way for students to apply needle chest decompressions, or NCD, on the manikins, for example. An NCD is a medical procedure that is most commonly used to treat patients suffering from a punctured or collapsed lung by inserting a needle with a catheter on the end through the chest cavity.

In the past, students would utilize a task trainer for working on specific procedures, such as a NCD, tourniquet, or wound packing among others. The students would assess the manikin first then turn to a task trainer to treat the wounds.

Espinoza modified the chests on the low-fidelity manikins, which are made out of PVC, so that the NCD insertion spots are soft enough to allow students to puncture through the manikin without causing the catheter to bend.  She also gave them trachea inserts that she carved into the manikins, and added injuries that look more realistic.

Now, students can examine and assess the “casualty,” inspect the location of the wounds and perform all of their interventions directly on the manikin itself. A set of manikins was created to use just for testing as well.

One of the biggest challenges with creating the wounds is that the manikins take a lot of abuse when students practice with them because they get moved around a lot to different outdoor locations where dirt and other elements wear down the moulage effect.

Many of the materials would break down or wear off too quickly, so experimenting with different moulage techniques and materials that make the wounds last longer is part of the process. Feedback from instructors was also an important factor in determining what works and what doesn’t.

“A lot of the stuff that special effects people do is usually a one or two time use, so it doesn’t need to last a long time,” Espinoza explained. “Unfortunately, I have students from three Whiskey teams that come down to the simulation lab so we’re running around 1,000 Soldiers through there. I had to figure out what the best materials were, the least expensive, the most effective; there was a whole lot of stuff that was going on trying to come up with the best way to apply the moulage and then hope it doesn’t break up too quickly. It’s all trial and error.”

Through the process of trial and error, Espinoza discovered that silicone-based material helps the moulage stay on longer. If it gets worn out it can easily be cleaned up and redone. The manikins can potentially be used hundreds of times before the moulage wears down, depending on the type of injury.

Some wounds, like amputations, don’t last as long because the manikins are being dragged continuously through the dirt during training. Facial wounds, though, tend to last longer because the face does not make contact with hard surfaces.

Modifying a manikin may take two or three days, depending on the wound being depicted. Some injuries needs to be created in steps and can be time consuming, so an assembly line process is ideal.

Espinoza and her team can line up three to five manikins, start working on one then move on to the next one while the previous one is drying, solidifying or cooling from having to heat the plastic to soften it for an effect.

The most important factor is making sure that the manikin is dry before moving on to the next step. Rushing through a modification may result in the moulage not staying on.

Depicting a shrapnel wound, for example, means that Espinoza will need to cut into the manikin. In order to do this, the area on the manikin where the wound will be created is heated in order to soften it so it can be cut and manipulated to form a wound. Then it will be painted to look realistic and set to dry.

If it’s possible to make use of materials already on hand, Espinoza will find a way to incorporate them into her design as well.

“We don’t want to use more than what we need or waste more than what we have,” she said.

Espinoza has used the popcorn material used for packing boxes to stuff the lower portion of manikin legs where a wound is depicted before adding foam to the area so students could learn how to pack the wound and practice applying tourniquets.  Prior to that, the foam would crack and fall apart.

“We just had to modify a lot of the stuff that we did in order to find the best way to do it.” 

Espinoza takes great pains to ensure she creates as realistic a product as possible.

“I want the students to get that shock and awe when they see the injuries without having that reaction the first time seeing it on a person, on a Soldier, on their battle buddy,” she added. “I would rather they have something as realistic as possible in these manikins without having somebody actually injured." 

A fellow instructor of Espinoza’s, who is now retired, once told her that what they’re doing now is saving lives through other people's hands. Those words have always stuck with her.

“I can do my job through these medics. If I can make something as real as possible so they can get that, ‘oh my god, this is for real!’ reaction and it makes sense, that’s all I really care about. I can get in their head and make them understand that what they’re doing makes a difference.”

To Espinoza, making mistakes on the manikins is the point of the training.

“You have to make mistakes to learn. If the students do it wrong here they can learn from it. I want them to do it wrong, because if they always do it right then what are they going to learn?"

“That’s exactly what I’ve done with these manikins,” she added. “I’ve had to make mistakes to learn how to make them better for the students to make their mistakes so they can get better. I’d much rather they do that here then on the battlefield.”

Disclaimer: Re-published content may be edited for length and clarity. Read original post.

You also may be interested in...

Influenza

Infographic
7/1/2019
Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Mononucleosis

Infographic
7/1/2019
Mononucleosis

A specimen is tested for mononucleosis at the medical clinic on Ellsworth Air Force Base, South Dakota (U.S. Air Force photo)

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Zika

Infographic
7/1/2019
Zika

Anopheles merus mosquito. (CDC photo by James Gathany)

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Psittacosis

Infographic
7/1/2019
Psittacosis

Green-winged Macaw. (U.S. Air Force photo)

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Cyclosporiasis

Infographic
6/1/2019
Cyclosporiasis

Outbreak of Cyclosporiasis in a U.S. Air Force Training Population, Joint Base San Antonio–Lackland, TX, 2018 While bacteria and viruses are the usual causes of gastrointestinal disease outbreaks, 2 Joint Base San Antonio (JBSA)– Lackland, TX, training populations experienced an outbreak of diarrheal illness caused by the parasite Cyclospora cayetanensis in June and July 2018. Cases were identified from outpatient medical records and responses to patient questionnaires.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Female infertility

Infographic
6/1/2019
Female infertility

Female infertility, active component service women, U.S. Armed Forces, 2013–2018 This report presents the incidence and prevalence of diagnosed female infertility among active component service women. During 2013–2018, 8,744 active component women of childbearing potential were diagnosed with infertility for the first time, resulting in an overall incidence of 79.3 cases per 10,000 person-years (p-yrs).

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Norovirus

Infographic
6/1/2019
Norovirus

Norovirus Outbreak in Army Service Members, Camp Arifjan, Kuwait, May 2018 In May 2018, an outbreak of gastrointestinal illnesses due to norovirus occurred at Camp Arifjan, Kuwait. The outbreak lasted 14 days, and a total of 91 cases, of which 8 were laboratory confirmed and 83 were suspected, were identified.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Ambulatory Visits, Active Component, U.S. Armed Forces, 2018

Infographic
5/1/2019
Ambulatory Visits

Ambulatory Visits, Active Component, U.S. Armed Forces, 2018 This report documents the frequencies, rates, trends, and characteristics of ambulatory healthcare visits of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during 2018.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-Service Member Beneficiaries of the Military Health System, 2018

Infographic
5/1/2019
Morbidity Burdens

The current report represents an update and provides a summary of care provided to non-service members in the MHS during calendar year 2018. Healthcare burden estimates are stratified by direct versus outsourced care and across 4 age groups of healthcare recipients.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Hospitalizations, Active Component, U.S. Armed Forces, 2018

Infographic
5/1/2019
Hospitalizations

Hospitalizations, Active Component, U.S. Armed Forces, 2018 This report documents the frequencies, rates, trends, and distributions of hospitalizations of active component members of the U.S. Army, Navy, Air Force, and Marine Corps during calendar year 2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Absolute and Relative Morbidity Burdens

Infographic
5/1/2019
Absolute and relative morbidity burdens

Absolute and Relative Morbidity Burdens Attributable To Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2018 This annual summary uses a standard disease classification system (modified for use among U.S. military members) and several healthcare burden measures to quantify the impacts of various illnesses and injuries among members of the active component of the U.S. Armed Forces in 2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Heat Illness

Infographic
4/1/2019
Heat Illness

This report summarizes reportable medical events of heat illness as well as heat illness-related hospitalizations and ambulatory visits among active component service members during 2018 and compares them to the previous 4 years. Episodes of heat stroke and heat exhaustion are summarized separately.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Exertional Rhabdomyolysis

Infographic
4/1/2019
Exertional Rhabdomyolysis

Each year, the MSMR summarizes the numbers, rates, trends, risk factors, and locations of occurrences of exertional heat injuries, including exertional rhabdomyolysis. This report includes the data for 2014–2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Exertional Hyponatremia

Infographic
4/1/2019
Exertional Hyponatremia

Each year, the MSMR summarizes the numbers, rates, trends, risk factors, and locations of occurrences of exertional heat injuries, including exertional rhabdomyolysis. This report includes the data for 2014–2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Lyme Disease

Infographic
4/1/2019
Lyme Disease

Each year, the MSMR summarizes the numbers, rates, trends, risk factors, and locations of occurrences of exertional heat injuries, including exertional rhabdomyolysis. This report includes the data for 2014–2018.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health
<< < 1 2 3 4 5 > >> 
Showing results 1 - 15 Page 1 of 5

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.