Back to Top Skip to main content Skip to sub-navigation

Summary of the 2018–2019 Influenza Season Among Department of Defense Service Members and Other Beneficiaries

Image of A flu shot vaccination sits on a table at 184th Sustainment Command headquarters in Monticello, Mississippi on Feb. 8, 2020. The single best way to prevent seasonal flu is to get vaccinated each year, but good wellness habits like covering your cough and washing your hands often can help prevent the spread of germs. (Mississippi Army National Guard photo by Staff Sgt. Veronica McNabb). A flu shot vaccination sits on a table at 184th Sustainment Command headquarters in Monticello, Mississippi on Feb. 8, 2020. The single best way to prevent seasonal flu is to get vaccinated each year, but good wellness habits like covering your cough and washing your hands often can help prevent the spread of germs. (Mississippi Army National Guard photo by Staff Sgt. Veronica McNabb)

Recommended Content:

Medical Surveillance Monthly Report

What are the new findings?

The 2018–2019 influenza season was longer than the preceding 2 seasons. Unlike most prior seasons, 2 strains were common. Influenza A(H1N1)pdm09 was the most common strain early in the season, but influenza A(H3N2) predominated later in the season. Total influenza vaccine effectiveness was low during this season in part because the A(H3N2) strain was antigenically drifted from the vaccine strain.

What is the impact on readiness and force health protection?

Surveillance data about influenza disease inform the planning and strategy for efforts to reduce the future impact of influenza on the health and medical readiness of the Armed Forces. The data and findings in this report reinforce the importance of the use of up-to-date multivalent influenza vaccines that protect against several different specific virus strains that may become common in the coming influenza season.

Abstract

The Armed Forces Health Surveillance Branch conducts weekly surveillance of influenza activity among Department of Defense (DOD) populations each influenza season. This report provides a summary of the data from the 2018–2019 influenza season. Ambulatory data for influenza-like illnesses (ILIs), influenza hospitalization data, and lab data for influenza-confirmed cases were used for the surveillance. The 2018–2019 season differed from past seasons in that it was much longer, had a later peak, and the predominant strain of influenza changed from influenza A(H1N1)pdm09 at the beginning of the season to influenza A(H3N2) in the middle of the season. Non-service member beneficiaries accounted for the majority of ILI-related encounters and hospitalizations. However, there were still 149 influenza-related hospitalizations among service members during the 2018–2019 season. Continued weekly surveillance of influenza among DOD populations is crucial to track increases in activity each season and the potential emergence of new and/or severe influenza subtypes.

Background

Influenza infects an estimated 8% of the U.S. population annually, with children and the elderly at highest risk.1 Service members may also be at a higher risk for exposure to influenza because of increased crowding and mixing in the recruit setting and duty assignments abroad where influenza subtypes may differ.2 Each influenza season is different because of antigenic drift in the circulating influenza subtypes, the degree of match between vaccine subtypes and circulating subtypes, and vaccine coverage of the population. As such, it is important to conduct annual surveillance of each influenza season to identify the onset and patterns of activity, emergence of drifted or shifted subtypes, and severity of the season.

The Armed Forces Health Surveillance Branch of the Defense Health Agency utilizes electronic sources of ambulatory medical encounters, hospitalizations, and laboratory data to conduct annual influenza surveillance among all Department of Defense (DoD) beneficiaries across the world. Weekly reports are generated to provide near real-time influenza surveillance data for each of the DOD Combatant Commands. This report provides a summary of DoD influenza surveillance data for the 2018–2019 influenza season.

Methods

Medical encounter and demographic data from the Defense Medical Surveillance System (DMSS) and Health Level 7 (HL7)-formatted laboratory data from the Navy and Marine Corps Public Health Center (NMCPHC) were used for this analysis. The HL7-formatted laboratory data are nonstandardized, so NMCPHC applies an algorithm to the data to identify influenza tests and standardize results. The surveillance period for the 2018–2019 influenza season was 30 September 2018 through 1 June 2019 (influenza weeks 40 through 22). Data from the 2016–2017 and 2017–2018 influenza seasons are also presented for comparison. The surveillance population included all individuals who were Military Health System (MHS) beneficiaries (i.e., active and reserve/guard component service members, retired service members, family members and other dependents of service members and retirees, and other authorized government employees and family members) who accessed care through either a military medical facility/provider or a civilian facility/provider (if paid for by the MHS). However, medical data from military treatment facilities (MTFs) that were using MHS GENESIS at the time of this surveillance (Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center) are not captured in the DMSS data. Therefore, medical encounter and laboratory data from these MTFs are not included in the analysis. For the analysis, populations were grouped as service members or other beneficiaries.

Outpatient medical encounters were classified as an influenza-like illness (ILI) encounter if they had an ILI diagnosis code (International Classification of Diseases, 10th Revision [ICD-10] codes B97.89, H66.9, H66.90, H66.91, H66.92, H66.93, J00, J01.9, J01.90, J06.9, J09, J09.X, J09.X1, J09.X2, J09.X3, J09.X9, J10, J10.0, J10.00, J10.01, J10.08, J10.1, J10.2, J10.8, J10.81, J10.82, J10.83, J10.89, J11, J11.0, J11.00, J11.08, J11.1, J11.2, J11.8, J11.81, J11.82, J11.83, J11.89, J12.89, J12.9, J18, J18.1, J18.8, J18.9, J20.9, J40, R05, R50.9) in any diagnostic position. The percentage of all outpatient encounters that were classified as ILI encounters was calculated for each week for each study population. Baseline ILI activity for the season was defined as the mean percentage of all outpatient encounters during noninfluenza weeks (weeks 22–39) over the prior 3 years.

Hospitalized influenza cases were defined as having a hospitalization with a diagnosis of influenza (ICD-10: J09, J10, J11) in any diagnostic position. The number of hospitalized influenza cases each week for each study population was calculated. For other beneficiaries, counts of influenza hospitalizations by age group (0–4, 5–9, 10–17, 18–35, 36–49, 50–64, 65+) were calculated.

Laboratory-confirmed influenza cases were defined as having a positive polymerase chain reaction, viral culture, or rapid influenza assay result. Laboratory-confirmed influenza cases were stratified by influenza types/subtypes (influenza A (not subtyped), influenza A(H1N1)pdm09, influenza A(H3N2), influenza A and B coinfection, and influenza B. The total number of laboratory-confirmed influenza cases stratified by type/subtype and the percentage of all influenza laboratory tests performed that had positive test results were calculated for each week of the influenza season for service members and for other beneficiaries separately.

Results

Virus surveillance

Among all beneficiaries, there were 149,254 respiratory specimens tested for influenza during the 2018–2019 influenza season (data not shown). Of those, 30,464 (20.4%) were positive for influenza. Service members had a lower percentage of specimens testing positive for influenza (16.7%) compared to other beneficiaries (21.8%). Among all populations, influenza A (any subtype) predominated during this season, with 28,454 (93.4%) of all positive specimens testing positive for influenza A. The distribution of subtypes among influenza A positive specimens was 73.3% influenza A (not subtyped), 12.6% A(H3N2), and 7.5% A(H1N1)pdm09. The remaining specimens were positive for influenza B (1,805; 5.9%) or an influenza A/B coinfection (205; 0.7%). The distribution of subtypes was similar between service members and other beneficiaries (data not shown).

The distribution of influenza serotypes and the percentage of specimens positive for influenza by week are presented in Figures 1a and 1b for service members and other beneficiaries, respectively. Among subtyped influenza A specimens, A(H1N1) pdm09 predominated early in the season, but A(H3N2) was predominant after week 3. The highest numbers of positive specimens and the highest percentages of positives occurred during week 9 for service members and weeks 6 and 7 for other beneficiaries. These results indicate peak influenza activity for the season during the month of February 2019.

Outpatient encounter ILI surveillance

During the 2018–2019 season, the weekly percentages of outpatient encounters due to an ILI for service members were above baseline (2.1%) for 22 weeks (weeks 46–15) (Figure 2a). A similar pattern was seen among other beneficiaries, for whom the percentages were above baseline (3.4%) for 20 weeks (weeks 47–14) (Figure 2b). This pattern is similar to the percentage of outpatient encounters due to ILI during the prior 2 influenza seasons.

Earlier in the 2018–2019 season, between weeks 40–52, the trend and magnitude of the percentages of encounters due to ILI were also similar to those of the past 2 seasons (Figures 2a and 2b). All seasons had peaks during weeks 52 and 1. This timing coincides with the end-of-year holiday period. Rather than a true peak in ILI activity though, this peak was being driven by a differential decrease in the total number of medical encounters and ILI encounters during that time. Specifically, for the 2018–2019 season, the total number of outpatient medical encounters decreased 58% from week 51 to week 52; however, ILI encounters decreased only 36% between those 2 weeks. Therefore, this peak in ILI percentage is considered an artifact of the overall decline in total outpatient encounters and is not reflected in the peak influenza weeks for the season. After week 1, the 2018–2019 season ILI percentages began to diverge from the prior 2 seasons. Among service members, the percentage of encounters due to ILI had a later peak (week 8) than the prior 2 seasons (weeks 2 and 3), but the magnitude of the 2018–2019 peak was similar to that of the 2017–2018 peak (Figure 2a). Among other beneficiaries, the trend was similar to the 2 prior seasons, with peak activity occurring during week 6 (2017–2018: week 5; 2016–2017: week 6), and the magnitude was similar to the 2016–2017 season (Figure 2b).

Influenza-related hospitalizations

Of the total 5,847 influenza-related hospitalizations during the 2018–2019 season, 149 occurred among service members (Figure 3). The majority of hospitalizations occurred among other beneficiaries (n=5,698; 97.5%). Hospitalizations peaked overall during week 11 (n=471), but service member hospitalizations peaked during week 10 (n=18) (Figure 3). Among other beneficiaries, the majority of influenza-related hospitalizations occurred among those 65 years of age or older (n=3,778; 66.3%) (Figure 4).

Editorial Comment

The 2018–2019 influenza season among service members and other DOD beneficiaries was a longer season with a later peak compared to the prior 2 seasons. The season also differed from prior seasons in that the beginning of the season was predominated by influenza A(H1N1)pdm09 while influenza A(H3N2) predominated after week 3; most seasons have just 1 influenza A subtype predominating. As expected, the influenza season among DOD service members and beneficiaries was similar to the season among the general U.S. population.3 Although the DOD influenza surveillance data include information from around the world, the majority of encounter and laboratory data came from the U.S. and to a lesser extent Europe, which also had an influenza season similar to that in the U.S.4 As with the general U.S. population, the elderly (> 64 years of age) accounted for the majority of influenza hospitalizations among other beneficiaries. The elderly population accounted for 66% of all other beneficiary hospitalizations for the season compared to 47% among the general U.S. population.3

A seasonal influenza vaccine is still the best way to protect against influenza. Service members are required to receive a seasonal influenza vaccine annually. During the 2018–2019 season, DOD policy set a goal of 90% of service members vaccinated by 15 January 2019.5 Although vaccination rates of service members were very high, influenza cases still occurred among this population during the 2018–2019 season. Cases of influenza among service members may be attributable to infections occurring before receipt of the influenza vaccine, within the 14 days following vaccination when the vaccine may not provide complete protection, or after vaccination because the vaccine is less than 100% effective. During the 2018–2019 season, vaccine effectiveness among the general U.S. population was particularly low because of the emergence of a drifted A/H3N2 (clade 3C.3a) circulating virus that differed from the vaccine strain.6 Although the influenza vaccine is not 100% effective at preventing influenza infection, a recent study showed that vaccination also decreased the risk of hospitalization and admission to the intensive care unit and decreased severity of illness.7 Continued vaccination of service members and other DoD beneficiaries is crucial to combat influenza infections and lessen disease severity. This season also demonstrated the importance of annual influenza surveillance, as the seasons differ from year to year.

References

1. Tokars JI, Olsen SJ, Reed C. Seasonal incidence of symptomatic influenza in the United States. Clin Infect Dis. 2018;66(10):1511–1518.

2. Sanchez JL, Cooper MJ. Influenza in the US military: an overview. J Infec Dis Treat. 2016;2(1).

3. Xu X, Blanton L, Elal AIA, et al. Update: Influenza activity in the United States during the 2018–19 season and composition of the 2019–20 influenza vaccine. MMWR Morb Mortal Wkly Rep. 2019;68(24):544–551.

4. European Centre for Disease Prevention and Control. Weekly influenza update, week 20, May 2019. https://www.ecdc.europa.eu/en/publications-data/weekly-influenza-update-week-20-may-2019. Accessed 28 January 2020.

5. Department of Defense Assistant Secretary of Defense. Memorandum: Guidance for the 2018–2019 Annual Influenza Immunization Program. 05 July 2018.

6. Flannery B, Kondor RJG, Chung JR, et al. Spread of antigenically drifted influenza A(H3N2) viruses and vaccine effectiveness in the United States during the 2018–2019 season. J Infect Dis. 2020;221(1):8–15.

7. Thompson MG, Pierse N, Sue Huang Q, et al. Influenza vaccine effectiveness in preventing influenza-associated intensive care admissions and attenuating severe disease among adults in New Zealand 2012–2015. Vaccine. 2018;36(39):5916–5925.

 

FIGURE 1a. Numbers of laboratory-confirmed influenza specimens by serotype and percentages of respiratory specimens positive for influenza by surveillance week, service members, U.S. Armed Forces, 2018–2019 influenza season

FIGURE 1b. Numbers of laboratory-confirmed influenza specimens by serotype and percentages of respiratory specimens positive

FIGURE 2a. Percentages of outpatient encounters due to ILI, service members, U.S. Armed Forces, 2018–2019 influenza season

FIGURE 2b. Percentages of outpatient encounters due to ILI, other DoD beneficiaries, 2018–2019 influenza season

IGURE 3. Influenza-related hospitalizations, service members and other DoD beneficiaries, 2018–2019 influenza season

FIGURE 4. Age distribution of beneficiaries with influenza-related hospitalizations, 2018–2019 influenza season

You also may be interested in...

Diagnosis of hepatitis C infection and cascade of care in the active component, U.S. Armed Forces, 2020

Article
2/1/2022
Navy Petty Officer 2nd Class Cecil Dorse, left, and Navy Petty Officer 3rd Class Janet Rosas test blood samples aboard the Military Sealift Command hospital ship USNS Comfort while the ship is in New York City in support of the nation’s COVID-19 response, April 6, 2020. Photo By: Navy Petty Officer 2nd Class Sara Eshleman

Hepatitis C virus (HCV) infection rates are rising in the U.S. despite widely available tools to identify and effectively treat nearly all of these cases. This cross-sectional study aimed to use laboratory data to evaluate the prevalence of HCV diagnoses among active component U.S. military service members.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Lengths of Hospital Stays for Service Members Diagnosed with Sepsis, Active Component, U.S. Armed Forces, 2011–2020

Article
1/1/2022
The (left to right) Senior Airman Austin Shrewsbury, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, works with student, Airman 1st Class Taylor Altman, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, to identify bacteria of patient’s cultures inside the microbiology laboratory at Wright-Patterson Air Force Base medical center June 30, 2017.

Sepsis is a serious and life-threatening organ dysfunction caused by a dysregulated host response to infection. In the U.S., sepsis is a leading cause of in-hospital mortality and 1 of the most expensive conditions treated in U.S. hospitals.

Recommended Content:

Medical Surveillance Monthly Report

Description of a COVID-19 Beta Variant Outbreak, Joint Base Lewis-McChord, WA, February–March 2021

Article
1/1/2022
U.S. Army Soldiers from 1-17th Infantry Battalion, 2nd Stryker Brigade, 2nd Infantry Division, clear an objective during the training exercise Bayonet Focus 19-02 at Yakima Training Center, Wash., May 6, 2019. Bayonet Focus is a training exercise designed to assess Soldiers’ ability to preform tasks and complete objectives under conditions experienced during combat situations. (U.S. Army photo by Spc. Angel Ruszkiewicz)

This report describes an outbreak of SARS-CoV-2, the causative agent of COVID-19, that peaked during 21–26 February 2021 and was tied to a single military training event. A total of 143 laboratory-confirmed cases were identified.

Recommended Content:

Medical Surveillance Monthly Report

COVID-19 and Depressive Symptoms Among Active Component U.S. Service Members, January 2019–July 2021

Article
1/1/2022
With the holiday season upon us, the cold, dark days that winter brings, and the social distancing and movement restrictions brought about by COVID-19, it’s not uncommon for people to feel depressed. (Photo by Erin Bolling)

This study examined the rates of depressive symptoms in active component U.S. service members prior to and during the COVID-19 pandemic and evaluated whether SARS-CoV-2 test results (positive or negative) were associated with self-reported depressive symptoms.

Recommended Content:

Medical Surveillance Monthly Report

Update: Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
12/1/2021
Osteoarthritis (OA) knee . film x-ray AP ( anterior - posterior ) and lateral view of knee show narrow joint space, osteophyte ( spur ), subchondral sclerosis, knee joint inflammation. Photo by: iStockPhoto

Osteoarthritis (OA), the most com­mon adult joint disease, is primarily a degenerative disorder of the entire joint organ, including the subchondral bone, synovium, and periarticular structures (e.g., tendons, ligaments, bursae). Spondylosis, often referred to as OA of the spine, is characterized by degenerative changes in the vertebral discs, joints, and vertebral bodies.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Donovanosis Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
12/1/2021
This photomicrograph of a tissue sample extracted from a lesion in the inguinal region of the female granuloma inguinale, or Donovanosis patient, depicted in PHIL 6431, revealed a white blood cell (WBC) that contained the pathognomonic finding of Donovan bodies, which were encapsulated, Gram-negative rods, representing the responsible bacterium Klebsiella granulomatis, formerly known as Calymmatobacterium granulomatis. Photo credit: CDC/ Susan Lindsley

Recommended Content:

Medical Surveillance Monthly Report

Incident COVID-19 Infections, Active and Reserve Components, Jan. 1, 2020–Aug. 31, 2021

Article
12/1/2021
U.S. Marines with Marine Rotational Force - Darwin receive a second COVID-19 test during quarantine on Royal Australian Air Force Base Darwin in Darwin, NT, Australia, June 12, 2020. The COVID-19 test was administered to each Marine after arriving from California. All Marines will be quarantined for 14 days and undergo an additional test before quarantine release. No Marines tested positive for COVID-19. The U.S. Marine Corps and Australian Defence Force service members are working together to ensure the safety of the local community. (U.S. Marine Corps photo by Lance Cpl. Natalie Greenwood)

Incident COVID-19 Infections, Active and Reserve Components, 1 January 2020–31 August 2021

Recommended Content:

Medical Surveillance Monthly Report

Update: Plant Dermatitis Among Active Component Service Members, U.S. Armed Forces, 2010–2020

Article
11/1/2021
Poison ivy (Toxicodendron radicans)

Plant dermatitis is an allergic inflammatory skin reaction in response to the oils of poisonous plants. In the U.S., the most common dermatitis-causing plant genus is the Toxicodendron (formerly Rhus). Approximately 50%–75% of the U.S. adult population are susceptible to skin reactions upon exposure to Toxicodendron oil or oleoresin, called urushiol.

Recommended Content:

Medical Surveillance Monthly Report

Sepsis Hospitalizations Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
11/1/2021
SAN DIEGO (Oct. 19, 2020) Hospital Corpsman 2nd Class Brittni Porter, a laboratory technician assigned to Naval Medical Center San Diego’s (NMCSD) microbiology laboratory, exams agar slides during a drug susceptibility tests Oct. 19. Drug susceptibility tests are conducted to see if a particular antibiotic will react with a patient’s sample on an agar slide. NMCSD’s mission is to prepare service members to deploy in support of operational forces, deliver high quality healthcare services and shape the future of military medicine through education, training and research. NMCSD employs more than 6,000 active duty military personnel, civilians, and contractors in Southern California to provide patients with world-class care anytime, anywhere. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Greenberg)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Prevalence of Hepatitis C Virus Infections in U.S. Air Force Basic Military Trainees Who Donated Blood, 2017–2020

Article
11/1/2021
U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Health Care Workers, August 2016–April 2021

Article
10/1/2021
Staff Sgt. James H. Wagner, William Beaumont Army Medical Center, vaccinates Maj. Gen. M. Ted Wong, commanding general, William Beaumont Army Medical Center, with the seasonal flu vaccines.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: History of COVID-19 Vaccination Among Air Force Recruits Arriving at Basic Training, March 2–June 15, 2021

Article
10/1/2021
COVID-19 vaccine bottle and syringes

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2016–June 2020

Article
10/1/2021
A student in the army participates in a cold-water immersion training

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: The Challenge of Interpreting Repeated Positive Tests for SARS-CoV-2 Among Military Service Members, Fort Jackson, SC, 2020–2021

Article
10/1/2021
Gloved hand holding an example of a negative rapid test for the SARS-CoV-2 virus (COVID-19).

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2016–June 2021

Article
9/1/2021
HIV Awareness graphic showing test tubes with HIV + and HIV - labels

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 16 - 30 Page 2 of 12
Refine your search
Last Updated: August 05, 2022

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.