Back to Top Skip to main content Skip to sub-navigation

The Prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) and ADHD Medication Treatment in Active Component Service Members, U.S. Armed Forces, 2014–2018

New Recruits with Golf Company, 2nd Recruit Training Battalion, are screened after arriving at Marine Corps Recruit Depot, San Diego, Dec. 28, 2020. As recruits arrive to the depot in the future, they will enter a staging period of 14 days during which they will be medically screened, monitored, and provided classes to prepare and orient them to begin recruit training. All of this will occur before they step onto our iconic yellow footprints and make that memorable move toward earning the title Marine. Current planning and execution remain fluid as the situation continues to evolve. The health and well-being of our recruits, recruiting and training personnel, and their families remain our primary concerns. All recruits will be screened and tested for COVID-19 prior to beginning recruit training. (U.S. Marine Corps photo by Lance Cpl. Grace J. Kindred) New Recruits with Golf Company, 2nd Recruit Training Battalion, are screened after arriving at Marine Corps Recruit Depot, San Diego, Dec. 28, 2020. As recruits arrive to the depot in the future, they will enter a staging period of 14 days during which they will be medically screened, monitored, and provided classes to prepare and orient them to begin recruit training. All of this will occur before they step onto our iconic yellow footprints and make that memorable move toward earning the title Marine. Current planning and execution remain fluid as the situation continues to evolve. The health and well-being of our recruits, recruiting and training personnel, and their families remain our primary concerns. All recruits will be screened and tested for COVID-19 prior to beginning recruit training. (U.S. Marine Corps photo by Lance Cpl. Grace J. Kindred)

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

Attention-deficit/hyperactivity disorder (ADHD) is a common diagnosis in childhood, characterized by persistent impairing inattention, hyperactivity, and impulsivity with symptoms recognized in patients before age 12.1 Since ADHD is the most common pediatric neurodevelopmental disorder diagnosed in the U.S., this condition has readiness and force health importance to the Department of Defense (DoD), and its high prevalence in the adolescent and adult civilian population affects the pool of military applicants.2 Current DoD accession policy lists ADHD as disqualifying for military applicants if they meet any of the following conditions: ADHD medication prescribed in the previous 24 months, an educational plan or work accommodation after age 14, a history of comorbid mental health disorders, or documentation of adverse academic, occupational, or work performance.3

The prevalence of ADHD in U.S. children aged 2–17 is estimated to range from 9–11% with approximately two-thirds of children with ADHD having at least 1 other mental, emotional, or behavioral disorder.4 In 2016, U.S. surveillance data revealed that 62% of children diagnosed with ADHD currently take medication for the condition.5 Although symptoms can resolve after childhood, the most recent estimate of overall prevalence of adult ADHD in the U.S. is 4.4%.4 Unpublished data from an analysis conducted using Defense Medical Surveillance System (DMSS) data, demonstrated annual ADHD prevalence estimates ranging from 1.7–3.7% in the active component from 2000–2016 with a peak prevalence in 2011 (E. T. Reeves, MD, unpublished data, 2017). Although patients with ADHD are more likely to have comorbid mood, anxiety, and substance use disorders,4,6–8 patients receiving ADHD medications may be protected from the development of these associated mental health conditions.9,10

The last major change to DoD accession policy standards for ADHD occurred in 2010 and resulted in more restrictive requirements (no medications for more than 24 months cumulative after age 14 instead of the previous requirement of no medications within 12 months of enlistment). Although services can accept applicant waivers with less stringent restrictions (e.g., the Air Force will consider waivers for recruits stable off medications for 15 months), ADHD diagnosis is consistently a common disqualifier for military service. In 2017, ADHD and disruptive behavior disorders were the fifth most frequent medical disqualification of first-time enlisted active component military applicants.11 Although previous studies have evaluated the impact of ADHD on retention rates2 (also E. T. Reeves, MD, unpublished data, 2017) and its association with post-traumatic stress disorder (PTSD),6,8 no surveillance data have been published on recent estimates of the prevalence of ADHD diagnoses in active component military personnel or on what proportion of active component service members with ADHD are dispensed ADHD medications. The primary objectives of this study were to determine the prevalence of ADHD diagnoses among active component service members from 2014 through 2018 and the proportion of these service members who were prescribed medications to treat the condition.

METHODS

This descriptive study utilized a surveillance period from 1 January 2014 through 31 December 2018. The surveillance population included any member of the Army, Navy, Air Force, or Marine Corps who served in the active component at any point during the surveillance period. All data used to identify prevalent cases of ADHD were derived from records routinely stored in the DMSS, which is maintained by the Armed Forces Health Surveillance Division (AFHSD). DMSS includes medical encounter data (e.g., outpatient visits, hospitalizations) of active component members of the U.S. Armed Forces in military and civilian (if reimbursed through the Military Health System) treatment facilities. The DMSS also includes medical screening data from Military Entrance Processing Stations (MEPS) and records of prescribed and dispensed medications from the Pharmacy Data Transaction Service (PDTS) which were also included in this analysis. 

For surveillance purposes, an ADHD case was defined as a qualifying ADHD diagnosis in the first or second diagnostic position for diagnoses assigned during MEPS medical screening; or 1 hospitalization with any of the qualifying diagnoses of ADHD in the first or second diagnostic position; or 2 outpatient medical encounters within 180 days of each other, with any of the defining diagnoses of ADHD in the first or second diagnostic position; or 1 outpatient/TMDS medical encounter in a psychiatric or mental health specialty care setting, identified by a Medical Expense and Performance Reporting System (MEPRS) code beginning with ‘BF’, with a qualifying diagnosis of ADHD in the first or second diagnostic position. The International Classification of Diseases, 9th Revision (ICD-9) and International Classification of Diseases, 10th Revision (ICD-10) codes used to identify ADHD cases included all those falling under the parent codes 314 and F90, respectively. 

Individuals with a diagnosis of ADHD at any time during the surveillance period were assumed to be prevalent cases at the time of accession regardless of when they were formally diagnosed, since the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) requires the presence of symptoms prior to age 12 to meet the diagnostic criteria for ADHD.1 
To qualify as treated for ADHD, service members had to have a PDTS record documenting that they had been dispensed an FDA-licensed drug for the treatment of ADHD at least twice within 6 months (181 days) which is consistent with previous research.10 Active component service members dispensed ADHD medication with longer gaps than this threshold were classified as untreated. Medications used for the treatment of ADHD included stimulants (amphetamines, methylphenidates), guanfacine (Intuniv), clonidine (Kapvay), and atomoxetine (Strattera). Table 1 presents a comprehensive list of ADHD medications used in the current analysis. 

Crude annual prevalences of ADHD in the active component of the military during 2014–2018 were calculated and reported as percentages. In these calculations, the numerator was the number of prevalent cases of ADHD in active component service members and the denominator included all active component service members in service as of 30 June in the specified year. The proportion of active component service members diagnosed with ADHD who had been dispensed ADHD medication as defined above was calculated. Service members for whom ADHD medication was dispensed (treated) and those for whom ADHD medication was not dispensed (untreated) were compared on several background variables (i.e., sex, age group, race/ethnicity group, education level, marital status, branch of service, rank/grade, and military occupation) using chi-square tests. All analyses were conducted using SAS/STAT software, version 9.4 (2014, SAS Institute, Cary, NC). 

RESULTS

During the 5-year surveillance period, the crude annual ADHD prevalence among the active component declined from 3.9% in 2014 (n=58,691) to 2.8% in 2018 (n=41,338) (Figure 1). Compared to their respective counterparts, service members with less than a high school education, those who were divorced or widowed, non-Hispanic whites, Army members, senior enlisted members, and those in healthcare occupations had higher overall prevalence rates of ADHD. Females and males had similar annual and overall prevalence estimates (Figure 2, Table 2). Junior enlisted (E1–E4) service members trended down from the group with the second highest prevalence in 2014 to the group with the lowest prevalence in 2018 (Table 2, Figure 3).

The proportion of prevalent ADHD cases who were prescribed ADHD medication during the surveillance period was 60.2%. During the surveillance period, the majority of medications prescribed were stimulants alone (78.9–79.6%) compared to combined stimulant and non-stimulant (16.5–17.4%) or non-stimulant only (3.6%–3.9%) regimens (Figure 4). ADHD patients were more likely to be dispensed medication if they were older than 25 years of age, above junior enlisted rank (E1–E4), divorced/widowed, or in a healthcare occupation (Table 3).

EDITORIAL COMMENT

This report documents the prevalence and medication trends of ADHD among the active component service members during 2014–2018. Previous unpublished data on crude annual ADHD prevalence in the active component prior to 2014 revealed that a peak prevalence occurred in 2011 (E. T. Reeves, MD, unpublished data, 2017). The current study demonstrated a continued decline in the crude annual prevalence of ADHD in the military since the ADHD accession medical standard became more restrictive in 2010, particularly among junior enlisted (E1–E4) service members whose crude annual ADHD prevalence was lower than all other rank groups in 2018. In contrast, national adult ADHD prevalence rose during this same timeframe.12 The current study demonstrated a continued decline in the crude annual prevalence of ADHD in the military since the ADHD accession medical standard became more restrictive in 2010, particularly among junior enlisted (E1–E4) service members whose crude annual ADHD prevalence was  lower than all other rank groups in 2018. In contrast, national adult ADHD prevalence rose during this same timeframe.12

The ADHD population in the DoD differs from that in the U.S. civilian population on several key demographic characteristics. Female and male service members have similar prevalences whereas adult males are approximately twice as likely to be diagnosed with ADHD compared to females in the U.S. civilian population.4,5,13 Possible explanations for this finding include that the true ADHD prevalence in males and females may be more similar than previous research has suggested when performing comparable occupations or indicates that males with ADHD may have characteristics (such as more recent medication use) selecting them to be disqualified from the military enlistment process at higher rates than females. Additionally, annual ADHD prevalences among service members in healthcare occupations were consistently more than 2 times the prevalences of those in other occupations. The reasons for this difference are unknown but may reflect better access to care, more knowledge about ADHD and treatment options, greater acceptance by coworkers, and/or less physical exertion-based/more sedentary jobs compared to other military occupations.

Medication dispensed for ADHD in the military (60%) represents a proportion similar to that in the U.S. civilian population (62%).4,14 These data and the distribution of medication for ADHD patients should be informative for commanders and providers. For example, stimulant medication, as a controlled substance, can only be prescribed for 3 months at a time, which complicates the deployment readiness of service members with ADHD. 

Several limitations should be considered when interpreting the results of this study. The current study used data on medications dispensed to active component service members through PDTS, but the medication adherence of these patients could not be assessed. Furthermore, patients with ADHD in this study could have been prescribed the medications for other medical conditions (FDA approved indications or off-label use) or have obtained medications by other means without a prescription. Observational studies are subject to bias. For example, the (e.g., more severe symptoms or comorbid diseases) from the population of ADHD patients without medication. Diagnostic data were derived from coded medical encounters, including medical examination at MEPS, according to standardized health surveillance case definitions; however, this method may underestimate the prevalence of ADHD, especially in service members not actively being treated with medication for ADHD or who were deliberately withholding information related to prior ADHD diagnosis at MEPS assessment (i.e., misclassification bias). The earliest year of data collection was 2014 because of the inability to link to pharmacy data prior to that year. 

In conclusion, this study found a decreasing trend in crude annual ADHD prevalence in the active component from 2014–2018. In terms of military readiness, a decrease in prevalence lessens the demand on commanders and medical practitioners to make decisions about whether or not ADHD is a waiverable condition for deployments; however, this must be balanced with the effects that a strict ADHD accession policy has on limiting the pool of military applicants. Continued research and discussions should focus on the optimal ADHD accession military standard. Future studies should evaluate the impact of deployment on ADHD patients, the high prevalence of ADHD in healthcare occupations, and differences among service members with ADHD accessed to the military through various methods (i.e., MEPS, waivers, withholding the diagnosis, new ADHD diagnosis). 

Author Affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Maj Sayers); Defense Health Agency, Armed Forces Health Surveillance Division (Ms. Zhu, Dr. Clark).

Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense, or Departments of the Army, Navy, or Air Force. 

REFERENCES

1. American Psychiatric Association. Attention deficit and disruptive behavior disorders. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed (DSM-5). Arlington, VA: American Psychiatric Association; 2013.

2. Krauss MR, Russell RK, Powers TE, Li L. Accession standards for attention-deficit/hyperactivity disorder: a survival analysis of military recruits, 1995–2000. Mil Med. 2006;171(2):99-102. 

3. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6130.03. Medical Standards for Appointment, Enlistment, or Induction in the Military Services. 6 May 2018.

4. Centers for Disease Control and Prevention. Data and Statistics About ADHD. https://www.cdc.gov/ncbddd/adhd/data.html. Accessed 5 September 2019.

5. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of parent-reported ADHD diagnosis and associated treatment among US children and adolescents, 2016. J Clin Child Adolesc Psychol.2018;47(2):199–212. 

6. Howlett JR, Campbell-Sills L, Jain S, et al. Attention deficit hyperactivity disorder and risk of posttraumatic stress and related disorders: A prospective longitudinal evaluation in US Army soldiers. J Trauma Stress. 2018;31(6):909–918.

7. Spencer AE, Faraone SV, Bogucki OE, et al. Examining the association between posttraumatic stress disorder and attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(1):72–83.

8. Ivanov I, Yehuda R. Optimizing fitness for duty and post-combat clinical services for military personnel and combat veterans with ADHD—a systematic review of the current literature. Europ J Psychotraumatol.2014;5(1):23894.

9. Biederman J, DiSalvo M, Fried R, Woodworth KY, Biederman I, Faraone SV. Quantifying the protective effects of stimulants on functional outcomes in attention-deficit/hyperactivity disorder: A focus on number needed to treat statistic and sex effects. J Adolesc Health. 2019;65(6):784–789.

10. Chang Z, D’Onofrio BM, Quinn PD, Lichtenstein P, Larsson H. Medication for attention-deficit/hyperactivity disorder and risk for depression: a nationwide longitudinal cohort study. Biol Psychiatry. 2016;80(12):916–922. 

11. Department of Defense. Accession Medical Standards Analysis and Research Activity Annual Report 2018. Silver Spring, MD: Statistics and Epidemiology Branch, Walter Reed Army Institute of Research; 2018.

12. Chung W, Jiang S-F, Paksarian D, et al. Trends in the prevalence and incidence of attention-deficit/hyperactivity disorder among adults and children of different racial and ethnic groups. JAMA NetwOpen. 2019;2(11):e1914344.

13. Kessler RC, Adler L, Barkley R, et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry. 2006;163(4):716–723.

14. Danielson ML, Visser SN, Chronis-Tuscano A, DuPaul GJ. A national description of treatment among United States children and adolescents with attention-deficit/hyperactivity disorder. J Pediatr. 2018;192:240–246.e1.

FIGURE 1. Crude annual ADHD prevalence, active component, U.S. Armed Forces, 2014–2018

FIGURE 2. Annual ADHD prevalence, by sex, active component, U.S. Armed Forces, 2014–2018

FIGURE 3. Annual ADHD prevalence, by rank, active component, U.S. Armed Forces, 2014–2018

FIGURE 4. Percentages of ADHD cases, by type of ADHD medication regimen, active component, U.S. Armed Forces, 2014–2018

TABLE 1. List of approved ADHD medications by drug class, generic drug name, and brand name

TABLE 2. Counts of prevalent cases, and prevalence rates of ADHD stratified by demographic and military characteristics, active component, U.S. Armed Forces, 2014–2018

TABLE 3. Counts of prevalent cases of ADHD by treatment status, active component, U.S. Armed Forces, 2014-2018

You also may be interested in...

Acute Flaccid Myelitis: Case Report

Article
1/1/2019

In August 2018, the U.S. Centers for Disease Control and Prevention (CDC) noted an increased number of reports of patients in the U.S. having symptoms clinically compatible with acute flaccid myelitis (AFM). AFM is characterized by rapid onset of flaccid weakness in one or more limbs and distinct abnormalities of the spinal cord gray matter on magnetic resonance imaging (MRI). Clinical and laboratory data suggest that AFM is associated with an antecedent viral infection. AFM may be difficult to differentiate from other causes of paralysis and, given that it is rare, has the potential to be overlooked. This case highlights important clinical characteristics of AFM and emphasizes the importance of including AFM in the differential diagnosis when evaluating active duty service members and Military Health System (MHS) beneficiaries presenting with paralysis.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Historical Perspective: Leptospirosis Outbreaks Affecting Military Forces

Article
1/1/2019

Leptospirosis is a widespread and highly prevalent bacterial zoonotic disease that is caused by pathogenic spirochetes of the genus Leptospira. It is transmitted to humans primarily through contact of abraded skin or mucous membranes with water or wet soil that has been contaminated with infected animal urine. Many wild and domestic animals are susceptible to infection by pathogenic Leptospira bacteria including rats, dogs, cattle, goats, sheep, and swine. Once chronically infected, a carrier animal can shed Leptospira bacteria in urine for long periods of time and Leptospira bacteria can survive in water or soil for weeks to months.higher among non-Hispanic white service members compared with those in other race/ethnicity groups. In both sexes, the annual rates of adrenal insufficiency and other disorders of adrenal gland increased slightly during the 16-year period.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Non-alcoholic Fatty Liver Disease (NAFLD), Active Component, U.S. Armed Forces, 2000–2017

Article
1/1/2019

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Cold Weather Injuries

Infographic
11/20/2018
Cold Weather Injuries

This update summarizes the frequencies, incidence rates, and correlates of risk of cold injuries among members of both active and reserve components of the U.S. Armed Forces during the past 5 years.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Rabies

Infographic
11/20/2018
Rabies

Although Germany is rabies-free for terrestrial land mammals, rabies exposure remains a concern for U.S. military personnel assigned there because of personal and military travel and deployments to rabies endemic countries. Deployments have become much more variable both in location and duration. Deployments have increasingly focused on enhancing partnerships and peacekeeping.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Malaria

Infographic
11/20/2018
Malaria

This report describes a cluster of 11 soldiers with vivax malaria among U.S. military personnel who trained at Dagmar North training area, near the demilitarized zone (DMZ), in the Republic of Korea (ROK) in 2015.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

DoD Flu VE

Infographic
10/26/2018
DoD Flu VE

Each season, several entities within the(DoD) perform surveillance for influenza among beneficiaries and utilize these data to perform VE analyses to estimate how well the seasonal vaccine protects against medically-attended influenza.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health | Influenza Summary and Reports

Psychiatric Medical Evaluations

Infographic
10/26/2018
Psychiatric Medical Evaluations

This study evaluated incidence of pre-deployment family problem diagnoses and psychiatric medical evacuations among a population of active component service members without a history of previous mental health diagnoses, who deployed to the U.S. Central Command Area of Responsibility for the first time between 1 January 2002 and 31 December 2014.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Pelvic Inflammatory Disease

Infographic
10/26/2018
Pelvic Inflammatory Disease

The purpose of this study was to update previous MSMR analyses of the incidence of acute Pelvic inflammatory disease (PID) among U.S. active component women using a 21-year surveillance period from 1996 through 2016. A secondary objective was to report on the proportion of service women with previously diagnosed PID who were subsequently diagnosed with infertility or ectopic pregnancy.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

CVD

Infographic
10/3/2018
CVD

As of part of WOMEN’S HEALTH MONTH, we focus on the findings related to female service members. If the risk factors are recognized, these service members can take steps to modify their lifestyles or obtain appropriate medical intervention, and reduce the likelihood of significant CVD while serving in the Armed Forces, and also after leaving service.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

Gynecologic Disorders

Infographic
10/3/2018
Gynecologic disorders are conditions that affect the female reproductive organs, including the uterus, ovaries, fallopian tubes, vagina, and vulva. As part of Women’s Health Month, this report describes the incidence and burden of four commonly occur-ring gynecologic disorders (menorrhagia, polycystic ovary syndrome (PCOS), uterine fibroids, and endometriosis) among active component service women from 2012 through 2016. This report also documents the number and percentage of women with co-occurring incident diagnoses during the surveillance period.

Gynecologic disorders are conditions that affect the female reproductive organs, including the uterus, ovaries, fallopian tubes, vagina, and vulva. As part of Women’s Health Month, this report describes the incidence and burden of four commonly occur-ring gynecologic disorders (menorrhagia, polycystic ovary syndrome (PCOS), uterine fibroids, and endometriosis) among active component service women from 2012 through 2016. This report also documents the number and percentage of women with co-occurring incident diagnoses during the surveillance period.

Recommended Content:

Health Readiness | Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health

HPV

Infographic
10/3/2018
HPV

Genital human papillomavirus (HPV) is the most common sexually transmitted infection (STI) in the U.S.; HPV is the second most frequently diagnosed STI in U.S. military service members. Currently, HPV vaccine is not mandatory for U.S. military service members, but the Defense Health Agency and each individual service have policies encouraging and offering HPV vaccination to service members. As part of women's health month, we examine initiation, coverage and completion rates of HPV vaccine among female service members.

Recommended Content:

Health Readiness | Epidemiology and Analysis | Medical Surveillance Monthly Report | Public Health
<< < ... 11 12 13 14 > >> 
Showing results 151 - 165 Page 11 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.