Back to Top Skip to main content Skip to sub-navigation

Surveillance for Vector-borne Diseases Among Active and Reserve Component Service Members, U.S. Armed Forces, 2016–2020

This image depicts a dorsal view of a female lone star tick, Amblyomma americanum, and is found in the Southeastern, and Mid-Atlantic United States. Females exhibit the star-like spot on their distal scutum. This tick is a vector of several zoonotic diseases, including human monocytic ehrlichiosis, and Rocky Mountain spotted fever (RMSF).  CDC/Michael L. Levin, PhD This image depicts a dorsal view of a female lone star tick, Amblyomma americanum, and is found in the Southeastern, and Mid-Atlantic United States. Females exhibit the star-like spot on their distal scutum. This tick is a vector of several zoonotic diseases, including human monocytic ehrlichiosis, and Rocky Mountain spotted fever (RMSF).

CDC/Michael L. Levin, PhD

Recommended Content:

Medical Surveillance Monthly Report

WHAT ARE THE NEW FINDINGS?

In the last decade, the most common vector-borne diseases among U.S. Armed Forces tended to be Lyme disease, malaria, Rocky Mountain spotted fever, dengue, and leishmaniasis. During 2014–2016, the pandemics of chikungunya and Zika virus transiently inserted those diseases into the top 5. The declining incidences of malaria and leishmaniasis during 2016–2020 are likely due to reduced numbers of service members assigned to endemic regions of the world.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

The current findings reemphasize that the threat to service members from vector-borne diseases will vary according to the prevalent endemic diseases of specific geographic locations, the availability of protective vaccines, and the implementation of individual and group preventive measures.

ABSTRACT

This report summarizes data from electronic reports of reportable medical events (RMEs) to examine the incidence of vector-borne infectious diseases among members of the U.S. Armed Forces during a recent 5-year period. Case reports of such diseases were characterized as confirmed, probable, or suspected by the senders of the RME reports. Records of inpatient and outpatient care were not searched to find additional cases. Lyme disease and malaria were the most common diagnoses among confirmed cases. The next most common diagnoses were Zika virus infection, Rocky Mountain spotted fever, and dengue. Those 5 diseases were responsible for 94% of all confirmed vector-borne diseases reported as RMEs. Among the 1,068 RMEs for vector-borne diseases (confirmed, probable, and suspected), there were only 105 such cases that could be linked to a record of hospitalization for the same diagnosis.

BACKGROUND

The U.S. Armed Forces and the Department of Defense (DoD) have traditionally dedicated considerable effort to the prevention and treatment of vector-borne diseases that may adversely affect the ability of military service members to train for and execute their operational mission. A continuing element of that effort has been the performance of surveillance of vector-borne illnesses to guide preventive actions. The pages of the MSMR reflect over 25 years of surveillance studies to inform military leaders and preventive medicine/public health assets about the incidence of vector-borne diseases and appropriate steps to counter the associated threat. The February 2018 issue of the MSMR contained the results of the most recent, broad surveillance study of the most concerning vector-borne diseases.1 This article presents an updated review of this subject, utilizing a modified methodology for capturing the occurrence of cases.

METHODS

The surveillance period was 1 January 2016 through 31 December 2020. The surveillance population included all active and reserve component service members in the Army, Navy, Air Force, or Marine Corps who served at any time during the surveillance period. It is DoD policy that cases of certain specified medical conditions and events of public health importance shall be reported electronically through military health channels for surveillance purposes.2 Conditions covered by this policy are referred to as reportable medical events (RMEs). The content of such electronic reports is stored in the databases of the Defense Medical Surveillance System (DMSS), which was used to ascertain cases for this analysis. The vector-borne diseases that are the focus of this report are listed in Table 1. Almost all vector-borne diseases of concern for military service members are designated as RMEs.

For this analysis, a “confirmed”, “probable”, or “suspected” case was defined as an individual identified through an RME report of a vector-borne disease that was described as “confirmed”, “probable”, or “suspect” by having met specified laboratory or epidemiologic criteria.2 An individual could be counted once per lifetime for each type of vector-borne disease. For example, an individual could be counted once for malaria and once for leishmaniasis during the surveillance period. Individuals diagnosed as a case prior to the start of the surveillance period were excluded. Confirmed cases were prioritized over probable and suspected cases, respectively. 

A case was considered to be hospitalized if they had an inpatient admission within 30 days before or after the date of onset reported in the RME. In addition, the inpatient record had to include a diagnosis for the vector-borne disease as listed in Table 1 in any of the diagnostic positions. The total number of cases hospitalized, as well as the percentage hospitalized and number of bed days were summarized for each vector-borne disease.

RESULTS

During the 5-year surveillance period, the electronic records of RMEs identified 709 confirmed cases of vector-borne diseases, 196 probable cases, and 163 suspected cases among service members of the active and reserve components (Table 2). Active component service members comprised 86% of confirmed cases, 84% of probable cases, and 83% of suspected cases. There were no RMEs for any of the diagnoses of hemorrhagic fevers, filariasis, plague, relapsing fever, or yellow fever. The category “Arboviral diseases, neuro-invasive and non-neuroinvasive” included 3 cases of confirmed West Nile virus infection, 1 case of confirmed tick born encephalitis (TBE), and 4 unspecified types, for a total of 8 confirmed cases in that category. Only the 14 diagnostic categories displayed in Table 2 had any RMEs during the 5-year period.

Of the total of 709 confirmed cases, 668 (94%) were associated with RME diagnoses of Lyme disease (n=311), malaria (n=172), Zika virus infection (n=80), Rocky Mountain spotted fever (RMSF) (n=54), and dengue fever (n=51). The other diagnoses that were reported as confirmed cases were much less commonly documented (Table 2).

The distribution of diagnoses among probable RME cases was different from that of confirmed cases. It was noteworthy that Lyme disease was the diagnosis for 53 (27%) of the 196 probable cases, but RMSF accounted for 116 (59%) of the total probable cases. None of the other diagnoses was reported more than 5 times as probable cases during the 5 year surveillance period (Table 2).

Among the suspected cases, the most common RMEs were for Lyme disease (n=74), RMSF (n=54), and Zika virus infection (n=14). Together those three diagnoses were the subject of 87% of suspected cases of RMEs (Table 2). For the results described below, the emphasis will be on confirmed cases.

Lyme disease

Lyme disease accounted for 43.8% of all confirmed RME cases and was the most common of the vector-borne diseases reported during 2016–2020. The annual numbers of confirmed cases were greatest in 2016 and lowest in 2018, when the number of Lyme disease cases was actually lower than the count of malaria cases (Figure 1). The numbers of probable and suspected cases of Lyme disease (n=127) were actually lower than the counts for RMSF (n=170) during the surveillance period (Table 2).

Malaria

Diagnoses of malaria (n=172) contributed 24.2% of all confirmed RME cases of vector-borne diseases during the 5 year surveillance period. The highest count was in 2018 (n=51) but the most recent two years had the lowest counts of the period (n=26 and 20, respectively) (Figure 1). There were only 12 cases of malaria in RME reports of probable and suspected cases (Table 2).

Zika virus infection

Confirmed cases of Zika virus infection numbered 80 during the period (Table 2). However, 73 of those cases were reported in 2016, with the remainder reported in 2017 (n=4), 2019 (n=2), and 2020 (n=1) (data not shown). Zika virus was introduced into the Americas in 2015 and the case counts in the U.S. as well as in the U.S. Armed Forces peaked in 2016.3 Of the 16 service member cases reported as probable or suspected, 12 were reported in 2016 (data not shown).

Rocky Mountain spotted fever

Confirmed cases of RMSF (n=54), unlike all other diagnoses that are reportable, were outnumbered by reports of probable (n=116) and suspected (n=54) cases of RMSF (Table 2). This phenomenon is likely the result of the necessity to confirm the diagnosis of RMSF (and related rickettsial diseases) via the performance of acute and convalescent serological studies or other more sophisticated tests such as a PCR test for DNA, immunohistochemistry of a biopsy specimen, or a positive culture. The current RME guidelines include RMSF in the broader category of Spotted Fever Rickettsiosis, which includes conditions with similar clinical presentations that may be distinguished only with the testing procedures mentioned above.

Dengue

Of the total of 60 cases of dengue reported via RME, 51 were described as confirmed (Table 2). At least 18 of those confirmed cases were reported by an overseas treatment facility and an additional 14 cases were linked to an overseas travel location. The most commonly cited of those locations were Djibouti (n=7) and the Philippines (n=5). There were relatively few RME cases of dengue that were classified as probable (n=5) or suspected (n=4) (data not shown).

Leishmaniasis

There were 16 confirmed cases of leishmaniasis reported during the period but only 2 of them were reported in 2019 and none in 2020 (Table 2, data not shown). Of the 6 cases for which the reports mention a location where the service member may have acquired the infection, 5 specify either Iraq, Afghanistan, or Syria and 1 mentions Palau (data not shown). Probable cases numbered 2 and there were no suspected cases.

Arboviral diseases, neuroinvasive and nonneuroinvasive

The 3 confirmed cases and 1 suspected case of West Nile virus infection were diagnosed in the continental U.S. and the single confirmed and probable cases of tick-borne encephalitis were diagnosed in Germany (data not shown). Among the total of 12 cases that were reported in this broad category, 7 were associated with Germany and 5 with the U.S. (data not shown).

Other

The remaining 5 diagnostic categories of RMEs were associated with a total of 17 confirmed cases, 12 probable cases, and 7 suspected cases over the 5-year surveillance period (Table 2). The most recent confirmed cases of chikungunya were 2 that were diagnosed in 2019 and they were associated with recent travel to the Philippines and Djibouti, respectively (data not shown).

Hospitalizations

During the 5-year surveillance period, there were 1,068 RME reports submitted for confirmed, probable, and suspected cases. Associated with the service members who were the subjects of those reports, there were 105 instances of hospitalization for which the records of inpatient care specified the diagnosis of the reportable condition. Such hospitalizations reflected only 6 different reportable diagnoses (Table 3). Of the 184 reported cases of malaria, 43.5% were associated with hospitalizations (n=80) for which a malaria diagnosis was recorded. For Lyme disease, the 11 hospitalizations represented 2.5% of all RME diagnoses of that condition; for dengue, the 7 hospitalizations were associated with 11.7% of all RME diagnoses; for arboviral diseases, there were 4 hospitalizations representing 33.3% of all cases that were reported. Finally, there were single hospitalizations for RMSF and typhus that represented .4% and 20% of RMEs for those respective diagnoses (Table 3).

EDITORIAL COMMENT

The identities of the most common vector-borne diseases in this analysis were similar to those documented in previous studies. For example, MSMR reports covering the years 1995–1999 and 2010–2016 noted that the most common diseases included Lyme disease, malaria, RMSF, dengue fever, and leishmaniasis, just as was the case for 2016–2020.1,4 The only exceptions to the lists of most common diseases were due to the pandemic occurrences of chikungunya and Zika virus infections starting in 2013.3,5

The methods employed in this surveillance study differed significantly from the two studies previously mentioned. The counts for 2016–2020 were based solely on RMEs electronically submitted by public health/preventive medicine specialists who evaluated the available information for each case in order to render an evaluation as to whether or not the diagnosis was confirmed, probable, or suspected. The previous studies utilized DMSS records of hospitalizations and/or outpatient encounters to identify cases. It is most noteworthy that using only the documentation of outpatient diagnoses to qualify as a “suspected” case, as was one of the criteria in 2010–2016, is a highly sensitive, but very non-specific means of identifying cases. The employment of just RMEs to identify and count cases of vector-borne diseases increases the probability they are true cases of the diseases of interest. However, the omission of inpatient and outpatient diagnoses of these diseases likely yields an underestimate of the true incidence of some of the conditions.

The analysis of hospitalizations among RME cases revealed that most reportable vector-borne diseases were not associated with a hospitalization within 30 days before or after the reported date of illness onset. The correlation between hospitalization and diagnosis of a reportable disease is mainly a reflection of the severity of illness. The diseases of interest in this study have a broad spectrum of clinical severity and, in particular, if a given disease can be readily treated with a highly effective antimicrobial agent, then rates of hospitalization may be quite low.

The reader is referred to the February 2018 MSMR article on this subject for further discussion of the topics of Lyme disease incidence in the U.S., the years of peak incidence of chikungunya and Zika virus infections, the declining incidence of leishmaniasis associated with reduced presence of service members in the Middle East, and the pitfalls of using outpatient diagnoses for surveillance.1

REFERENCES

1. O’Donnell FL, Stahlman S, Fan M. Surveillance for vector-borne diseases among active and reserve component service members, U.S. Armed Forces, 2010–2016. MSMR. 2018;25:8–15.

2.  Defense Health Agency. Armed Forces Reportable Medical Events. Guidelines and Case Definitions. January 2020.

3.  Ikejezie J, Shapiro CN, Kim J, et al. Zika virus transmission–Region of the Americas, May 15, 2015 – December 15, 2016. MMWR Morb Mortal Wkly Rep. 2017;66:329–334.

4.  Garvey AL. Five most common arthropodborne diseases among active duty service members in the U.S. Armed Forces, 1995-1999. MSMR. 2000;6:12–16.

5.   Fischer M, Staples JE. Notes from the field. Chikungunya virus spreads in the Americas – Caribbean and South America, 2013–2014. MMWR Morb Mortal Wkly Rep. 2014:63:500–501.

FIGURE. Annual counts of confirmed cases of most common RMEs, active and reserve components, U.S. Armed Forces, 2016–2020

TABLE 1. Reportable vector-borne diseases, with ICD-10 diagnostic codes, type of infectious agent, type of vectors, geographic distribution, and availability of FDA-approved vaccine

TABLE 2. Numbers of confirmed, probable, and suspected cases of vector-borne diseases, active and reserve components, U.S. Armed Forces, 2016–2020

TABLE 3. Frequency of hospitalizations of service members with RMEs for vector-borne diseases and associated number of hospital bed days, active and reserve components, U.S. Armed Forces, 2016–2020

You also may be interested in...

Brief Report: Prevalence of Hepatitis C Virus Infections in U.S. Air Force Basic Military Trainees Who Donated Blood, 2017–2020

Article
11/1/2021
U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow)

Recommended Content:

Medical Surveillance Monthly Report

Update: Plant Dermatitis Among Active Component Service Members, U.S. Armed Forces, 2010–2020

Article
11/1/2021
As the name implies, poison ivy (Toxicodendron radicans) usually grows as an ivy. However, in Zion it occurs in its shrub state growing only a few feet tall in the wetter canyons of the park. Poison ivy can also be identified by the greyish-white fruit that is produced in the fall. Although it may appear harmless, beware of this plant as its oils can produce an allergic reaction in the form of an irritating rash. NPS Photo/Jonathan Fortner

Plant dermatitis is an allergic inflammatory skin reaction in response to the oils of poisonous plants. In the U.S., the most common dermatitis-causing plant genus is the Toxicodendron (formerly Rhus). Approximately 50%–75% of the U.S. adult population are susceptible to skin reactions upon exposure to Toxicodendron oil or oleoresin, called urushiol.

Recommended Content:

Medical Surveillance Monthly Report

Sepsis Hospitalizations Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
11/1/2021
SAN DIEGO (Oct. 19, 2020) Hospital Corpsman 2nd Class Brittni Porter, a laboratory technician assigned to Naval Medical Center San Diego’s (NMCSD) microbiology laboratory, exams agar slides during a drug susceptibility tests Oct. 19. Drug susceptibility tests are conducted to see if a particular antibiotic will react with a patient’s sample on an agar slide. NMCSD’s mission is to prepare service members to deploy in support of operational forces, deliver high quality healthcare services and shape the future of military medicine through education, training and research. NMCSD employs more than 6,000 active duty military personnel, civilians, and contractors in Southern California to provide patients with world-class care anytime, anywhere. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Greenberg)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: The Challenge of Interpreting Repeated Positive Tests for SARS-CoV-2 Among Military Service Members, Fort Jackson, SC, 2020–2021

Article
10/1/2021
An example of a negative rapid test for the SARS-CoV-2 virus (COVID-19). The Texas Military Department has begun distributing rapid COVID-19 tests to its service members across the state as a force health protection measure. This will ensure that the Soldiers and Airmen serving their communities during the COVID-19 pandemic remain healthy and safe. (Photo by ENS Charles E. Spirtos)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: History of COVID-19 Vaccination Among Air Force Recruits Arriving at Basic Training, March 2–June 15, 2021

Article
10/1/2021
COVID-19 vaccine bottle and syringes

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2016–June 2020

Article
10/1/2021
A student participates in a cold-water immersion training at Fort McCoy, Wis., Jan. 17, 2020, as a part of the Cold-Weather Operations Course. (Photo By Scott Sturkol, Army)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Health Care Workers, August 2016–April 2021

Article
10/1/2021
Staff Sgt. James H. Wagner, William Beaumont Army Medical Center, vaccinates Maj. Gen. M. Ted Wong, commanding general, William Beaumont Army Medical Center, with the seasonal flu vaccines. All WBAMC beneficiaries are encouraged to get vaccinated against the seasonal flu vaccine and the novel flu virus. Look for flu updates on the WBAMC Facebook page, the All Bliss and the Fort Bliss Monitor. (Photo by SGT Valerie Lopez)

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2016–June 2021

Article
9/1/2021
HIV awareness graphic is created on Adobe Photoshop at Fort Carson, Colorado, July 16, 2021. Measures taken to reduce the risk of contracting HIV is abstinence, using condoms while having sex, taking preventative medications, getting tested for HIV or other STDs regularly, and talking to your sexual partners about HIV and STDs. (U.S. Army graphic by Spc. Woodlyne Escarne)

Recommended Content:

Medical Surveillance Monthly Report

Is Suicide a Social Phenomenon during the COVID-19 Pandemic? Differences by Birth Cohort on Suicide Among Active Component Army Soldiers, Jan.1, 2000–June 4, 2021

Article
9/1/2021
Spc. Brittney VerBerkmoes speaks among fellow Soldiers in a group centered on finding a way for the Army to mitigate the amount of suicides that occurs among Soldiers. The Solarium was held to help junior service members to communicate with the Army’s senior leaders about finding solutions to important issues occurring in the Army. (U.S. Army photo by Sgt. Elizabeth Rundell)

Is Suicide a Social Phenomenon during the COVID-19 Pandemic? Differences by Birth Cohort on Suicide Among Active Component Army Soldiers, 1 January 2000–4 June 2021

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: A Simple Model Estimating the Impact of COVID-19 on Lost Duty Days Among U.S. Service Members

Article
9/1/2021
U.S. Navy Hospital Corpsman 2nd Class Julian Gordon, left, a preventative medicine technician with Marine Rotational Force - Darwin, administers a COVID-19 test to a U.S. Marine with MRF-D, at Royal Australian Air Force Base, Darwin, NT, Australia, March 22, 2021. Marines and Sailors with MRF-D are required to conduct strict COVID-19 mitigation procedures prior to arrival in Darwin, in compliance with Northern Territory Health Authorities. All service members must provide three documented negative COVID-19 swab tests throughout their travel and prior to being released from a 14-day quarantine period. (U.S. Marine Corps photo by Sgt. Micha Pierce)

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Relationships between Self-reported Psychological Conditions and Aggressive Behaviors Among Crew Members of a U.S. Navy Aircraft Carrier, January 2021

Article
9/1/2021
A U.S. Marine Corps drill instructor with Golf Company, 2nd Recruit Training Battalion, motivates a recruit during a Marine Corps Martial Arts Program (MCMAP) training session at Marine Corps Recruit Depot, San Diego, Aug. 2, 2021. The drill instructors ensured recruits conducted the techniques safely and effectively during the training session. (U.S. Marine Corps photo by Cpl. Zachary T. Beatty)

Recommended Content:

Medical Surveillance Monthly Report

Cross-Sectional Analysis of the Association between Perceived Barriers to Behavioral Health Care and Intentions to Leave the U.S. Army

Article
9/1/2021
U.S. Army Central Reserve component Soldiers swear the oath of enlistment during a mass reenlistment ceremony in celebration of the U.S. Army Reserve 113th birthday at Camp Arifjan, Kuwait, April 23, 2021. This ceremony reaffirms their commitment to the U.S. Army Reserve and the people of the United States. (U.S. Army photo by Sgt. Robert Torres, 203rd Public Affairs Detachment)

Recommended Content:

Medical Surveillance Monthly Report

Mental Health Disorders, Behavioral Health Problems, Fatigue and Sleep Outcomes in Remotely Piloted Aircraft/Manned Aircraft Pilots, and Remotely Piloted Aircraft Crew, U.S. Air Force, 1 October 2003–30 June 2019

Article
8/1/2021
U.S. Air Force Capt. Danielle ‘Dani’ Pavone, an MQ-9 pilot with the 110th Wing, speaks during a training scenario through a plexiglass barrier to Staff Sgt. Justin Brandt, an MQ-9 sensor operator at the Battle Creek Air National Guard Base, Battle Creek, Michigan. The plexiglass mitigates risk of coronavirus transmission during the pandemic. (U.S. Air National Guard photo by Staff Sgt. Bethany Rizor)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance of Mental and Behavioral Health Care Utilization and Use of Telehealth, Active Component, U.S. Armed Forces, 1 January 2019–30 September 2020

Article
8/1/2021
U.S. Air Force Lt. Col. Eric Oglesbee, the PACAF Pediatric Psychological Developmental Team child psychologist with the 18th Healthcare Operations Squadron, demonstrates how a telehealth appointment would operate at Kadena Air Base, Japan, April 19, 2021. Providing pediatric mental health support to five overseas Air Force bases, P3DT uses both virtual and in-person. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

Recommended Content:

Medical Surveillance Monthly Report

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Article
8/1/2021
 Capt. Elrico Hernandez, battalion physician assistant for 2nd Battalion, 3rd Infantry Regiment, 3rd Stryker Brigade Combat Team, 2nd Infantry Division, discusses a training scenario that is part of the first Primary Care Behavioral Health seminar. The new program is being undertaken by medical care providers throughout United States Division-North in order to provide better mental health screening for Soldiers

Update: Mental Health Disorders and Mental Health Problems, Active Component, U.S. Armed Forces, 2016–2020

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.