Back to Top Skip to main content Skip to sub-navigation

Influenza Outbreak During Exercise Talisman Sabre, Queensland, Australia, July 2019

Flight Lt. Michael Campion, an aviation medical officer from No. 3 Aeromedical Evacuation Squadron prepares a medical patient leaving Exercise Talisman Sabre to be transferred to a C-27J Spartan aircraft July 18, 2019 at Rockhampton Airport. No. 3 Aeromedical Evacuation Squadron is providing medical support to troops participating in Talisman Sabre 2019, a bilateral combined Australian and United States exercise designed to train respective military services in planning and conducting Combined and Joint Task Force operations, and improve the combat readiness and interoperability between Australian and US forces. (U.S. Army photo by Sgt. 1st Class John Etheridge) Flight Lt. Michael Campion, an aviation medical officer from No. 3 Aeromedical Evacuation Squadron prepares a medical patient leaving Exercise Talisman Sabre to be transferred to a C-27J Spartan aircraft July 18, 2019 at Rockhampton Airport. No. 3 Aeromedical Evacuation Squadron is providing medical support to troops participating in Talisman Sabre 2019, a bilateral combined Australian and United States exercise designed to train respective military services in planning and conducting Combined and Joint Task Force operations, and improve the combat readiness and interoperability between Australian and US forces. (U.S. Army photo by Sgt. 1st Class John Etheridge)

Recommended Content:

Medical Surveillance Monthly Report

WHAT ARE THE NEW FINDINGS?

Influenza remains a threat during military exercises even in highly immunized populations mainly because of the virus’s ability to cause illness in large numbers of soldiers which can overload an austere medical system designed mainly to care for traumatic injuries. Use of low-intensity clinical isolation areas is one means of limiting influenza’s impact on major exercises scheduled during expected influenza transmission seasons.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Immunization remains the primary force health protection measure for military exercises, but exercises that extend into the Southern Hemisphere may result in the inability to use the most appropriate hemispheric vaccine because of restricted access to products not manufactured for the domestic U.S. market.

ABSTRACT

Influenza appeared in Queensland, Australia during Exercise Talisman Sabre (TS-19) in July 2019 with an early focus within the New Zealand Defence Force members arriving in Australia aboard HMNZS Canterbury. A total of 76 cases of influenza-like illness (ILI) were reported, of which 43 were confirmed by rapid diagnostic tests to be influenza A (n=32) and B (n=11). Australia’s influenza season (starting in March, peaked in July 2019) exposed large numbers of military members to a virus for which they had been suboptimally immunized either because of low uptake of the Southern Hemisphere vaccine by Australians/New Zealanders who were not mandated to be immunized, or because U.S. soldiers had received only the Northern Hemisphere vaccine for the 2018–2019 season. A low-intensity clinical unit separate from the main exercise was used as a means of isolating ILI cases both to facilitate their treatment and limit disease spread. Despite disease rates of <1%, influenza still had a major impact on TS-19 mostly in terms of the considerable medical resources required to manage ILI.

BACKGROUND

Joint and combined military exercises concentrate large numbers of military members under circumstances that favor introduction of new viruses into stressed populations. Currently, the risk influenza poses to military exercises is not mass mortality but mass casualties that could overwhelm the usually limited medical support capabilities designed mainly to treat traumatic injuries during field exercises. This report summarizes an influenza epidemic that occurred within a combined military exercise, Talisman Sabre (TS-19), which took place in Queensland, Australia during July–August 2019.

Talisman Sabre is a long-running series of military exercises in which more than 32,000 soldiers, sailors, and marines mainly from Australia, New Zealand, and the U.S. gather in Queensland in northeastern Australia at mid-year for a 3-week field exercise. Although each national contingent operates under its own command chain, there is considerable intermixing of forces. Southern Hemisphere influenza transmission season occurs at midyear with a usual peak in August/September.

In 2009, when the influenza A(H1N1) virus’s potential was not yet known, advanced diagnostic capability was deployed into the field during Talisman Sabre and enabled the detection of 12 persons with the pandemic influenza strain.1 Fortunately the pathogenic potential of the 2009 influenza A(H1N1) strain was inferior to its distant predecessor of 1918, and there was no serious disruption of the exercise although some naval units were removed from participation when influenza appeared shipboard.

Immunization remains the primary force health protection measure against influenza, although protection may be suboptimal depending on the degree to which the vaccine strains chosen for production match the viruses that eventually circulate. Although U.S. forces have high immunization participation rates because influenza vaccination is mandatory, they are immunized with vaccine tailored for the Northern Hemisphere and have usually been immunized more than 6 months prior to TS-19. While influenza immunization of Australian and New Zealand soldiers is strongly encouraged, it is not mandatory for exercise participation, and immunization rates are usually less than ideal.

Additional concerns regarding influenza during TS-19 were generated by the early start to the influenza season in March 2019 in Australia. The start of this season was dominated by influenza A(H3N2) viruses reminiscent of the relatively severe 2017 season (the so-called “Aussie flu”).2 The U.S. Indo-Pacific Command (INDOPACOM) Surgeon’s office had investigated the possibility of using the Southern Hemisphere influenza vaccine for U.S. forces during port visits of USS Carl Vinson to Sydney in June 2019, but timing and supply issues made such use of the vaccine impractical.

METHODS

As the largest scheduled series of military exercises in Australia, the biennial TS-19 involved a great deal of preliminary healthcare planning which began during planning conferences in Hawaii in October 2018 and March 2019. Influenza was an identified medical threat subject to usual precautions and immunization. Deployed forces were supported by a Role 1 clinic (basic ambulatory care) at Rockhampton, a holding/isolation ward at Williamson Airfield, and a Role 2+ (enhanced care) facility from the 2nd General Health Battalion at Shoalwater Bay, as well as on-board medical capability from USS WaspHMAS Canberra, and HMAS Adelaide. Disease surveillance systems were instituted upon buildup to the official start of the exercise on 17 June 2019.

Influenza-like illness (ILI) was defined as an illness marked by fever greater than 100 °F with either cough or sore throat in the absence of a known cause other than influenza. Influenza testing was performed on nasal swabs using a rapid detection test, the Quidel QuickVue Influenza A+B test. All influenza-positive samples were then confirmed via polymerase chain reaction testing on the Biofire FilmArray using the Respiratory Panel 2 plus by the pathology department at the Role 2+ facility.

RESULTS

ILI cases initially appeared among the New Zealand Defence Force (NZDF) contingent, which had arrived largely aboard the HMNZS Canterbury on or about 7 July 2019 after a 3-day transit from Auckland. Investigation of the ship’s berthing arrangements indicated person-to-person spread of ILI in up to 12 cases while shipboard. The major concern was that the occurrence of several cases of influenza early in the exercise foreshadowed a much larger problem that would arise later when many more soldiers were involved under austere field conditions. A communicable disease plan was revised and instituted in early July 2019. The emphasis was on rapid identification of ILI cases and patient management in Rockhampton away from the main body of troops, which represented more an isolation effort than a quarantine effort. A 20-bed low-intensity clinical facility was set up (with contingency plans for another 20 beds if required) and largely staffed by Australian Defence Force (ADF) reserve component members. Patients did not require inpatient care but could not be left in an austere field environment with ILI symptoms. Oseltamivir was provided for treatment and to reduce infectiousness among those found to be rapid diagnostic test-positive for the influenza virus.

From 17 June 2019 through 27 July 2019, 254 sick call visits were recorded at the various medical treatment units and 76 patients were diagnosed with ILI on clinical grounds. Of the 76 ILI cases that were identified, 32 (42.1%) tested positive for influenza A and 11 (14.5%) for influenza B. These illnesses represented a substantial proportion of all sick call visits during TS-19 as shown in Figure 1. The remaining 33 tests (43.4%) were negative for influenza virus. National contingent composition is shown in Figure 2 and illustrates the early predominance of cases of influenza among NZDF members aboard Her Majesty's New Zealand Ship (HMNZS) Canterbury. No other shipboard outbreaks were noted. Confirmed influenza cases peaked at 10 per day on 12 July 2019 before the formal start of the exercise (data not shown).

EDITORIAL COMMENT

Respiratory infections have long been known as threats to military operations and many modern exercises have been disrupted by viruses including influenza.3-4 TS-19 was not unique in this regard, but its location in Australia presented additional challenges. The exercise occurred during the peak of influenza season in the Southern Hemisphere, and the early phase of the outbreak placed particular focus on a naval ship. In addition, there was the possibility that influenza cases would affect a range of national groups (U.S., Australia, New Zealand, Canada, UK, Japan) each employing different approaches to addressing influenza. Rapid diagnostics have evolved to become important tools in the management of ILI; now it is possible to quickly determine whether the causative pathogen is influenza and then manage the public health consequences of a virus with such epidemic potential. For TS-19, a special isolation facility was set up, not because otherwise healthy soldiers were thought to be at risk of life-threatening disease, but rather because of the likelihood that the limited medical capability of usual field medical facilities would otherwise be overwhelmed by sick soldiers. During military exercises in a soldier population which has already been immunized, the remaining option in managing an influenza outbreak consists of isolating ILI cases from uninfected troops who are receiving prophylactic antiviral treatment. Isolation of cases within a health facility away from troops under antiviral treatment is the best way to minimize generalized spread in the population which should have already been immunized. The civilian healthcare system of Queensland was extremely supportive of military medical efforts during TS-19, but it could not be expected to house multiple influenza cases that did not otherwise require hospitalization. The low-intensity clinical facility in Rockhampton was a pragmatic response that worked well to optimize treatment and likely minimized the total number of ILI cases.

Influenza during joint and combined military exercises often is seen as particularly important to Air Forces because responding to the virus may require suspension of flight operations, but naval operations are also vulnerable to influenza. As demonstrated during a 1996 outbreak on the USS Arkansas, even highly vaccinated crews may be subject to high attack rates (42%) which may result in aborted exercises if single individuals with influenza A(H3N2) viruses poorly matched to seasonal influenza vaccine infect the ship’s crew.5 The situation was never so dire on HMNZS Canterbury, but it did serve as a focus of initial influenza cases that could have infected a much larger number of soldiers in the absence of an effective communicable disease plan.

Influenza immunization is far from perfect, but there is hope that universal influenza vaccines may eventually be developed that will end the evolutionary arms race conducted each year using seasonal vaccines that are at best modestly effective.6 The particular problem experienced during TS-19 was that the Southern Hemisphere influenza A(H3N2) 2019 vaccine component (A/Switzerland/8060/2017) was an updated version of what the U.S. forces had been immunized against (A/Singapore/INFIMH-16-0019/2016) which used the Northern Hemisphere 2018–2019 vaccine.7 Whether this would have made a difference was unknown, but valid concerns had been raised because during the relatively severe 2017 Australian season the influenza A(H3N2) component’s vaccine efficacy was estimated to be 10% (95% confidence interval: -16%–31%).6 Although adequate Southern Hemisphere 2019 vaccine was available, it was not approved by the U.S. Food and Drug Administration as there was no motivation for a manufacturer to register a vaccine not intended for U.S. use. Stringent regulatory authority approval by the Australian Therapeutic Goods Administration existed but was bureaucratically insufficient for use in U.S. forces. Further inquiry regarding exceptions to policy might be useful in improving management of influenza immunization for soldiers outside their usual jurisdiction. Such exceptions may prove important as future influenza pandemics are unlikely to provide sufficient time for preparation of stocks of new vaccines, as was demonstrated during 2009 when vaccine became available only after the peak of the pandemic.

Author Affiliations: Headquarters, Joint Operations Command. Bungendore, NSW, Australia (MAJ van Ash, COL Nasveld); 2nd General Health Battalion, Gallipoli Barracks, Enoggera, QLD, Australia (CAPT Zahra); Australian Defence Force Malaria and Infectious Diseases Institute, Enoggera, QLD, Australia (Dr. Shanks).

Acknowledgements: The authors thank the many military medical personnel from Australia, New Zealand, and the U.S. who helped manage the ill service members during Exercise Talisman Sabre 2019.

Disclaimer: The opinions expressed are those of the authors and do not necessarily reflect those of the Australian Defence Force or the U.S. Department of Defense. Conflicts of interest: The authors do not claim any conflict of interest.

Funding: Authors are employees of the Australian Defence Organization. No specific funding was given for this epidemiological study.

REFERENCES

1. Inglis TJ, Merritt AJ, Levy A, et al. Deployable laboratory response to influenza pandemic; PCR assay field trials and comparison with reference methods. PloS One. 2011;6(10):e25526.

2. Australian Government Department of Health. Australian Influenza Surveillance Report No. 12– 23 September-6 October 2019. Canberra, Australia: Department of Health; 2019.

3. Shanks GD, Hodge J. The ability of seasonal and pandemic influenza to disrupt military operations. J Mil Veterans Hlth. 2011;19(4):13–18.

4. Sanchez JL, Cooper MJ, Myers CA, et al. Respiratory infections in the US military: recent experience and control. Clin Micro Rev. 2015;28(3):743–800.

5. Earhart KC, Beadle C, Miller LK, et al. Outbreak of influenza in highly vaccinated crew of U.S. Navy ship. Emerg Infect Dis. 2001 May- Jun;7(3):463–465.

6. Coleman R, Eick-Cost A, Hawksworth AW, et al. Department of Defense end-of-season influenza vaccine effectiveness estimates for the 2017–2018 season. MSMR. 2018;25:16–20.

7. CDC. Prevention and control of seasonal influenza with vaccines: recommendations of the advisory committee on immunization practices— United States, 2018–19 influenza season. MMWR. 2018;67(3):1–20.

FIGURE 1. Epidemic curve of ILIa during Exercise Talisman Sabre, Queensland, Australia, 27 June–27 July 2019

FIGURE 2. ILIa during Exercise Talisman Sabre, by national group, Queensland, Australia, 4 July–26 July 2019

You also may be interested in...

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Marines carry a wooden log for physical fitness

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During August–September 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 August–11 September 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing’s syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Division | Medical Surveillance Monthly Report | Summer Safety

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis
<< < ... 6 7 8 9 > >> 
Showing results 121 - 133 Page 9 of 9

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.