Skip main navigation

Military Health System

Clear Your Browser Cache

This website has recently undergone changes. As a result, the website is experiencing intermittent interruptions. We're aware of this issue and we're working to resolve these issues. Users finding unexpected concerns may care to clear their browser's cache to ensure a seamless experience.

Brief Report: Medical Encounters for Snakebite Envenomation, Active and Reserve Components, U.S. Armed Forces, 2016–2020

Image of 03_Rattler. Masters of camouflage, the Sidewinder Rattlesnakes are out and about aboard Marine Corps Logistics Base Barstow, California, May 11. Watch where you put your hands and feet, and observe children and pets at all times, as this is the natural habitat for these venomous snakes and a bite can cause serious medical problems. Notice the sharp arrow-shaped head with pronounced jaws, and the raised eye sockets, as well as the telltale rattles. Keep in mind, however, that rattles can be broken or lost, so you may or may not hear a rattle before they strike to protect themselves.

Background

Of the approximately 3,000 known snake species in the world, about 20% (i.e., 600 species) are venomous.1 Snakebite envenomation (SBE) occurs when venom is injected into a human or animal via a snake's fangs, or much less frequently, via spitting venom into a victim's eye or open wound. Not all snakebites result in envenomation; an estimated 25% to 50% of snakebites are "dry bites" in which an insufficient amount of venom is injected to cause clinical symptoms.2,3 Clinical effects of snake envenomation can range from mild local effects (e.g., superficial puncture wounds, pain and swelling) to more severe complications including permanent disability and death.3

SBEs are a significant public health issue especially in the tropical and subtropical areas of Africa, Asia, and Latin America.4 In 2017, the World Health Organization (WHO) identified SBE as a neglected tropical disease. WHO estimates between 1.8-2.7 million SBEs occur annually, resulting in an estimated 81,410 to 137,880 deaths.5 Each year in the U.S., there are an estimated 5,000-10,000& SBEs and fewer than 10 associated deaths.6

Although rare, SBEs are an occupational hazard for military members worldwide. The recent published literature on SBE in military members is sparse. During contingency operations in Iraq and Afghanistan, self-reported incidence of snakebite in U.S. troops was 4.9 snakebites per 10,000 person-months.7 A recent review of snakebites treated between 2015-2017 by the French military health service in overseas locations identified only two soldiers (1 French, 1 Dutch) treated for SBE in Mali, both of whom were treated with antivenom and recovered fully.8 A 2018 summary of snakebites in UK personnel focused on Europe and Africa and reported on an envenomation in a UK service member bitten by a horned viper in Croatia. This summary also highlighted that the majority of SBE cases treated by military medical providers occurred among local civilians.9 The only death attributed to SBE in a U.S. service member that was reported in the lay press occurred in 2015 in Kenya.10

No comprehensive summary of all medically diagnosed SBEs in U.S. service members worldwide has been published. This analysis summarizes the incidence of SBE in active and reserve component service members identified through review of administrative medical data. This analysis also provides a breakdown of SBEs by demographic and military characteristics including the country and combatant command in which the SBEs were treated.

Methods

The surveillance period was from 1 Jan. 2016 through 31 Dec. 2020. The surveillance population included all individuals who served in the active or reserve component of the U.S. Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. The Defense Medical Surveillance System (DMSS) was searched for all inpatient, outpatient and/ or theater medical encounters that contained any of the ICD-10 codes falling under the parent code T63.0 ("Toxic effect of snake venom") in any diagnostic position. Because ICD-9 diagnoses still appear in the theater medical encounter data, service members could also qualify as a case if they had a diagnosis of ICD-9: 989.5 ("Toxic effect of venom") or E905.0 ("Venomous snakes and lizards causing poisoning and toxic reactions"). The patient assessment field was reviewed for these ICD-9 coded records to determine whether the injury was caused by a snake, and only the records for injuries that were caused by snakes were retained. A service member could be counted as an incident case once per year. The location of the SBE was determined by mapping the treating facility for the SBE to a specific country and combatant command.

Results

During the 5-year surveillance period, a total of 345 SBEs were diagnosed in U.S. service members. Approximately 90% of cases were among male service members and about 45% occurred in soldiers. More than three-quarters of SBEs were diagnosed among active component service members (Table). The majority of cases occurred in service members in the 20-29 year old age group. Service members in the repair/engineering and combat-specific occupational groups were the most frequently affected by SBEs and constituted over half of all SBEs during the period (Table).

The annual numbers of SBEs were at their highest in 2017 (n=83); this peak represented a 9.2% increase in SBEs over the prior year. Total SBEs declined by 22.6% in 2018 and a further 9.4% in 2019; 2019 had the lowest number of incident cases of SBE during the surveillance period (n=58). Incident cases increased by 10.3% in 2020 (n=64) which was the same level as 2018 (Figure 1). Overall, 59.4% (n=205) of the cases occurred between the months of June and September (Figure 2).

Most SBE cases (96.2%) were diagnosed in the U.S.; consequently, almost 96% of cases occurred in the U.S. Northern Command (Table). Cases diagnosed in Hawaii are attributed to the U.S. IndoPacific Command. Counts of cases by specific location were 1 in Puerto Rico, 330 in the U.S. (excluding Hawaii), 5 in Guam, 4 in Japan, 2 in Korea, 2 in Hawaii, and 1 with an unknown location.

Editorial Comments

This analysis demonstrates that the vast majority of medically diagnosed SBEs in U.S. service members during 2016-2020 occurred in the U.S. In accordance with the findings of a recent report on the epidemiology of snakebites in the U.S., male service members were disproportionately affected by SBEs.6

This analysis is subject to the same limitations as any analysis of administrative medical data. Only SBEs that were diagnosed by a medical provider and entered into a service member's electronic medical record could be included in this analysis. An SBE could also be missed due to miscoding or because medical care for an SBE was not documented in the medical record.

In the U.S., service member SBEs occur more frequently during warm weather months. Preventive measures for avoiding SBE include precautions such as avoiding snakes in the wild, wearing long pants or boots when working or walking outdoors, and wearing gloves when handling brush or reaching into areas that might house snakes. Anyone bitten by a snake should seek medical attention as soon as possible.11,12

Although this analysis demonstrates that the majority of service members' SBEs occur in the U.S., appropriate precautions should be taken to avoid SBE during deployment outside of the U.S. Planning for deployment should include education in the medically important snake species and the appropriate medical management of snakebites specific to deployment location. In 2020, the Joint Trauma System published a Clinical Practice Guideline for Global Snake Envenomation Management (CPG ID:81) which provides a comprehensive guide to snakebite management by combatant command.12

References

  1. Venemous snakes distribution and species risk categories. World Health Organization. Accessed 08 May 2021. https://apps.who.int/bloodproducts/snakeantivenoms/database/
  2. Pucca MB, Knudsen C, S Oliveira I, et al. Current Knowledge on Snake Dry Bites. Toxins (Basel). 2020;12(11):668.
  3. Joint Trauma System Clinical Practice Guideline: Global Snake Envenomation Management. Accessed 08 May 2021. https://jts.amedd.army.mil/assets/docs/cpgs/Global_Snake_Envenomation_Management_30_Jun_2020_ID81.pdf
  4. Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths. PLoS Med. 2008;5(11):e218.
  5. World Health Organization. Snake bite envenomation. 2019. World Health Organization. Accessed April 29, 2020. https://www.who.int/news-room/fact-sheets/detail/snakebite-envenoming
  6. Greene SC, Folt J, Wyatt K, Brandehoff NP. Epidemiology of fatal snakebites in the United States 1989-2018. Am J Emerg Med. 2020 Aug 29:S0735-6757(20)30777-30784.
  7. Shiau DT, Sanders JW, Putnam SD, et al. Selfreported incidence of snake, spider, and scorpion encounters among deployed U.S. military in Iraq and Afghanistan. Mil Med. 2007;172(10):1099-1102.
  8. Bomba A, Favaro P, Haus R, et al. Review of Scorpion Stings and Snakebites Treated by the French Military Health Service During Overseas Operations Between 2015 and 2017. Wilderness Environ Med. 2020;31(2):174-180.
  9. Wilkins D, Burns DS, Wilson D, Warrell DA, Lamb LEM. Snakebites in Africa and Europe: a military perspective and update for contemporary operations. J R Army Med Corps. 2018 Sep;164(5):370-379.
  10. Montgomery, Nancy. Soldier died of venomous snake bite, autopsy confirms. Stars and Stripes. March 15, 2015. Accessed May 08, 2021. https://www.stripes.com/news/soldier-died-of-venomous-snake-bite-autopsy-confirms-1.334382
  11. Torpy JM, Schwartz LA, Golub RM. JAMA patient page. Snakebite. JAMA. 2012;307(15):1657.

FIGURE 1. Annual counts of incident cases of snakebite envenomations, by sex, active and reserve component service members, U.S. Armed Forces, 2016–2020

FIGURE 2. Cumulative number of incident snakebite envenomations, by month, active and reserve component service members, U.S Armed Forces, 2016–2020

TABLE. Demographic and military characteristics of incident cases of snakebite envenomation, U.S. Armed Forces, 2016–2020

You also may be interested in...

Article
Apr 1, 2019

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of ...

Article
Apr 1, 2019

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine ...

Article
Apr 1, 2019

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke ...

Article
Apr 1, 2019

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, ...

Article
Apr 1, 2019

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s ...

Article
Mar 1, 2019

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the ...

Article
Mar 1, 2019

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical ...

Article
Mar 1, 2019

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part ...

Article
Mar 1, 2019

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes ...

Article
Feb 1, 2019

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The ...

Article
Feb 1, 2019

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. ...

Article
Feb 1, 2019

Update: Malaria, U.S. Armed Forces, 2018

Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from ...

Article
Feb 1, 2019

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory ...

Article
Dec 1, 2018

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person ...

Skip subpage navigation
Refine your search
Last Updated: July 11, 2023
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on X Follow us on YouTube Sign up on GovDelivery