Skip to main content

Military Health System

A new approach to categorization of ocular injury among U.S. Armed Forces

Image of Cover 2a. Cover 2a

Recommended Content:

Medical Surveillance Monthly Report

Abstract

This report describes a new approach to categorizing ocular injury using Military Health System data, the application of an algorithm to a dataset, and the verification of the results using an audit of clinical data. Based on health care encounter data, an algorithm was developed to systematically document the occurrence of specific complications and medical procedures in the 12 months following initial ocular injuries. The injuries were classified into 1 of 2 groups: "uncomplicated injury" with no complications or medical procedures and "complicated injury" with complications and/or medical procedures. Injuries in the latter group were further classified by severity into low, moderate, and high strata based on a ranking of complications and medical procedures. From 2016 through 2019, 12,664 complicated ocular injuries and 49,016 uncomplicated injuries were identified among active duty U.S. military members. The vast majority (84%) of complications were concurrent or occurred within 30 days following the injury. The 3 most common complications (orbital floor fracture, iridocyclitis and recurrent corneal erosion) accounted for 52% of complications. These findings underscore the importance of accurate classification of complex ocular injuries to inform studies in multiple areas including injury prevention, the development of clinical guidelines, and health services research.

What Are the New Findings?

The Vision Center of Excellence (VCE) developed a classification algorithm that uses longitudinal data (including diagnoses of complications and medical procedures related to the initial ocular injury) to more accurately classify ocular injuries sustained by U.S. service members. The results of the algorithm's classification were verified through medical record review.

What is the Impact on Readiness and Force Health Protection?

Ocular injuries present an ongoing threat to readiness and retention of service members. Robust surveillance methods are needed to account for non-specific and often inconsistent diagnosis coding in electronic health records. The increased accuracy of classification of ocular injuries provides critical data to inform prevention and treatment initiatives.

Background

Ocular injuries have the potential to negatively impact the readiness and retention of U.S. service members and incur a significant cost to the Military Health System (MHS).1 The availability of large administrative/billing data sources provides the opportunity to surveil the burden and trend of ocular injuries. It is a challenge, however, to categorize ocular injuries based on electronic health record (EHR) data because coded diagnoses may be non-specific and inconsistent in resource-constrained settings, such as an emergency room or a primary care clinic. Ocular injuries frequently involve more than 1 anatomic structure, and have been described in multiple publications as complex injuries.2–4 Surveillance of ocular injuries in the U.S. Armed Forces is conducted by the Tri-service Vision Conservation and Readiness Program of the Army Public Health Center and the Armed Forces Health Surveillance Division which identifies cases based on initial diagnoses in administrative health records.5

The Vision Center of Excellence (VCE) was established by congressional mandate in 2008 as a center of excellence in the prevention, diagnosis, mitigation, treatment, and rehabilitation of military eye injuries.6 The VCE developed the military ocular injury case definition in support of multiple initiatives, including improved utilization of the Defense and Veterans Eye Injury and Vision Registry (DVEIVR). This registry contains information to track diagnoses, interventions/treatments, and follow-up for each case of significant eye injury sustained by a member of the U.S. Armed Forces while serving on active duty. The DVEIVR permits accurate ocular injury burden reporting and estimation of health care burden across the MHS. To improve the accuracy of classification of ocular injuries in the MHS, the VCE developed a novel approach to characterizing ocular injury that uses information on multiple diagnoses and procedures from MHS administrative data. This approach allows classification of ocular injuries by their severity and can be used for multiple types of initiatives including monitoring trends and targeting significant ocular injuries in the U.S. military members. The objective of this study was to provide accurate information on the type and severity of ocular injuries to inform strategic planning for medical readiness, resource allocation, and prevention programs.

Methods

Ocular injury data were obtained by applying the VCE case definition for ocular injury to the Military Health System Management and Analysis Reporting Tool (M2), a longitudinal administrative data warehouse that contains electronic medical records of hospitalization and ambulatory medical encounters in both military medical treatment facilities (Direct CareDirect care refers to military hospitals and clinics, also known as “military treatment facilities” and “MTFs.”direct care) and civilian facilities (purchased care). Additional data on ocular injuries documented in deployed settings were obtained from the Theater Medical Data Store (TMDS). Health care records of both active component and activated guard/reserve service members were captured based on beneficiary category in the M2 and included in these analyses. Guard and reserve service members receive the same care entitlements as those in the active component if they were on active duty for more than 30 days, or may qualify for Line of Duty Care if injured while on active duty for fewer than 30 days.

The classification algorithm (Figure) developed by the VCE used multiple criteria including 320 International Classification of Diseases, 10th Revision (ICD-10) diagnosis codes for ocular injuries (Table 1), 332 ICD-10 diagnosis codes for potential complications (Table 2), and 1,543 Procedural Classification System (PCS) and ICD Current Procedural Terminology (CPT) codes for outpatient procedures associated with ocular injuries (Table 3) to assess and classify the severity of the injuries.

Of note, the complications include conditions with potential impacts on readiness and retention, such as corneal ulcers, retinal breaks, and orbital fractures. The included list of procedures was based on the results of the ophthalmology knowledge, skills, and abilities (KSA) workgroup. This ad hoc workgroup, consisting of military ophthalmologists with deployment experience, reviewed outpatient ophthalmic procedures and developed a tiered system to determine readiness to deploy based on the number of procedures performed in the military treatment facilities. The VCE mapped CPT codes to ICD-10 PCS codes to ensure capture of procedures conducted in inpatient settings. As a result, individuals with a KSA tier of 1, 2, or 3 were classified by the algorithm as complicated injury if not already identified as such based on complications (Figure).

All encounter data in the M2 and the TMDS that included diagnoses of ocular injuries or complications for active duty members were collected from 2016 through 2020. Data were line-based, and each line represented 1 visit (direct care) or 1 claim (Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care). Data from different care locations were consolidated into 1 comprehensive dataset to accommodate all variables and visit dates were used to assess temporality of encounters. The algorithm was then applied to identify the presence of the pre-specified injuries, complications, and medical procedures for each individual during the 12 months following the initial injury date. Those injured individuals without complications and no medical procedures corresponding to KSA tier 1 through 3 were classified as having suffered an uncomplicated injury; otherwise, individuals were classified as having a complicated injury. For those individuals with uncomplicated injury, if 60 days passed after the date of the injury without a subsequent health care encounter for an uncomplicated ocular injury, then an encounter for an uncomplicated injury after the 60-day period would be counted as a newly incident uncomplicated injury. For complicated injuries, the severity level was further categorized as low, moderate, or high based on the highest rank of presented complications (Table 2) or prescribed medical procedures (Table 3). Of note, complicated injuries were not subject to an incidence rule like that for uncomplicated injuries; an individual was assumed to sustain only 1 complicated injury during the study period. Complicated injuries with complications only, medical procedures only, or both were counted. For complications, the number of different complication types for each individual was determined; for individuals with more than 1 type of complication, all complications were included (Figure). Based on the incidence rule, individuals may suffer from multiple uncomplicated injuries but only one complicated injury was counted per individual during the study period. Data analysis and case classification were conducted using R, version 4.0.3 (2020, R Core Team).

The results of the classification by the algorithm were verified by the VCE team of medical auditors using clinical data. Study auditors had clinical backgrounds in eye care and were trained on ocular care medical record abstraction and classification of ocular injuries using DVEIVR business rules for data abstraction. Cohen's kappa was used to measure agreement between the outcomes of the VCE algorithmic classification and record review. A total of 1,000 individuals (500 complicated and 500 uncomplicated) with relevant encounter data from 2018 were randomly selected for medical record validation. These data were used to develop and troubleshoot the algorithm. For example, ICD-10 codes S05.70X*, S05.71X, and S05.72X were added to the complication list after this condition (avulsion of eye) was found documented in the medical record following initial injury documentation. The VCE is currently evaluating outcome data of available cases for complicated injury using information in the DVEIVR to further explore the utility of injury severity stratification.

Results

From 2016 through 2019, 12,664 complicated and 49,016 uncomplicated injuries were identified among 59,653 active duty service members using the classification algorithm (Figure). Of the individuals with complicated injuries, 6,119 had complications only, 5,554 had medical procedures only, and 991 had documentation of both complications and medical procedures. Individuals with complicated injuries were further classified as having injuries of low severity (n=1,864), moderate severity (n=8,785), and high severity (n=2,015). A total of 2,834 individuals with uncomplicated injuries had multiple occurrences of such injuries.

Approximately half (52%) of complications were concurrent (diagnosed on the same day as the ocular injury) or immediately following the initial injuries. Eighty five percent and 91% of complications occurred within 30 and 90 days of the documentation of the initial injury, respectively. Of the individuals (n=7,089) with complicated injuries, 1,184 had more than one complication.

Among the types of complications (n=12,365), the top 3 complications included orbital floor fracture (20%), iridocyclitis (19%), and recurrent corneal erosion (13%). The top 10 complications accounted for 85% of total complications (Table 4).

Of the 1,000 individuals selected for verification of the algorithm, 844 records were available for chart review using the Armed Forces Health Longitudinal Technology Application (AHLTA) or the Joint Legacy Viewer. Of the 445 cases classified as complicated by the algorithm, 443 (99.6%) were found to be correctly categorized based on medical record review. Of the 399 cases classified as uncomplicated by the algorithm, 392 (98.2%) were found to be correctly categorized based on record review. Agreement of classifications between the algorithm and chart review was high (kappa=0.96).

Editorial Comment

Through the application of the described algorithm which assesses multiple diagnoses and/or prescribed surgical procedures, ocular injuries were categorized and stratified into groups that more accurately reflect the complexity and severity of these injuries to improve classification of ocular injury. The resulting categorizations were verified using an audit of clinical data with a high degree of agreement. The clinical reality of the complex nature of ocular injuries is especially difficult to capture by conventional surveillance which relies on a single diagnostic code in administrative records. Categorizing using a single code may produce inaccurate data that are difficult to interpret from a public health, clinical, or operational perspective. The implications for accurate case definitions by systematical evaluation of associated complications and procedures for surveillance and research are significant.

Furthermore, the results of this analysis show that 85% of complicated injuries had the first documented complication within the first 30 days of the initial injury. This approach can be adapted to surveillance systems which require update at an interval less than 12 months; for example, a quarterly update can capture and categorize the vast majority (90%) of cases. The potential miscategorization due to limited length-of-care episodes is likely minimal due to the frequency of concurrent complications and procedures. Annual analysis would enable further evaluation of all associated complications and procedures, allowing for refinement of public health interventions targeting primary prevention, detailed outcome analysis to inform tertiary prevention efforts, and quantitation of health care burden. In addition, identification of cases for review in conjunction with detailed clinical information available in the DVEIVR could identify best practices in clinical treatment of military ocular injuries.

An ocular injury frequently involves multiple anatomic structures with multiple complications. For example, contusion might be associated with hyphema (an accumulation of blood in the anterior chamber of the eye), vitreous hemorrhage, orbital floor fracture, traumatic cataract, and optic nerve injury which cannot be captured by conventional surveillance methods relying on first-recorded ICD code. Data from the application of the algorithm showed that 15.6% of complicated injuries had multiple complications (ranging from 2 to 6 unique complications).

There are limitations to this approach. It is known that EHR data are mainly for administrative uses and have no guarantee for accuracy of coded diagnoses for surveillance and research.7,8 The limitations of administrative/claims data for secondary use have been described previously, specifically in regards to ophthalmic care. For example, it has been noted that patients may be misclassified due to misdiagnosis, miscoding, as well as coding practices of multiple providers with varying coding experience.9 Furthermore ocular injuries can be complex and involve multiple anatomic regions which cannot be appropriately captured by the conventional surveillance approaches. It is necessary to utilize multiple medical data points, e.g., diagnoses, prescribed procedures and medications, to increase accuracy of case identification based on electronic health record.10

In addition, ocular burns and corrosion were not included in this analysis; these injuries will need to be explored separately with modifications to the case definition with special consideration given to expected complications more likely in these injuries (for example, ocular surface complications such as dry eye syndrome or exposure keratopathy, and lid complications such as entropion or ectropion).

It was assumed that the new case definition captured all ocular injuries without considering the possibility of missing true cases of ocular injury in M2. It is, however, extremely unlikely that there were ocular injuries which leave no trace of clinical information to be captured by this case definition. This study did not select samples of uncaptured cases as negative controls for validation because it would have needed a large sample to identify false negatives given the extremely rare likelihood. Therefore, no estimation was made of sensitivity, specificity, positive predictive value, and negative predictive value for the case definition.

The main purpose of injury surveillance efforts is to inform the development, prioritization, and execution of injury prevention initiatives. The results of this study demonstrated that categorization of ocular injuries could be obtained by evaluation of episodes of care recorded in administrative records for the secondary uses of surveillance and research. The longitudinal approach ensures more reliable characterization of injuries which offers several advantages: 1) it removes reliance on single ICD-10 codes for categorization of ocular injuries, 2) it increases the sensitivity and specificity of the case definition of ocular injury, 3) it provides a measure of severity of ocular injuries, and 4) it provides increased granularity of data for ocular injuries categorized as complicated, with capture of multiple associated complications and procedures. The resultant outcome provides a rich, clinically-relevant dataset for outcome and health system analysis.

Author affiliations: Department of Defense/Veterans Affairs Vision Center of Excellence, Defense Health Agency Research and Development Directorate (COL Reynolds, Dr. Gu).

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

Disclosure: Utilization of data and development of the case definition methodology was completed under the DHA Office of Research Protection #935913.

References

  1. Frick KD, Singman EL. Cost of military eye injury and vision impairment related to traumatic brain injury: 2001-2017. Mil Med. 2019;184(5–6):e338–e343.
  2. Colyer MH, Mazzoli RA. Complex ocular trauma outcomes and system capabilities: lessons from a combat zone and implications for national eye trauma care. Eye (Lond). 2021;35(8):2069-2070.
  3. Gonnering RS. Is oculofacial surgery complex or merely complicated? Curr Opin Ophthalmol. 2018;29(5):434–439.
  4. Harvey MM, Justin GA, Brooks DI, Ryan DS, Weichel ED, Colyer MH. Ocular trauma in Operation Iraqi Freedom and Operation Enduring Freedom from 2001 to 2011: A Bayesian network analysis. Ophthalmic Epidemiol. 2021;28(4):312–321.
  5. Hilber DJ. Eye injuries, active component, U.S. Armed Forces, 2000–2010. MSMR. 2011;18(5):2–7.
  6. National Defense Authorization Act for Fiscal Year 2008, Public Law 110–181, section 1623. 2008.
  7. Horsky J, Drucker EA, Ramelson HZ. Accuracy and completeness of clinical coding using ICD-10 for ambulatory visits. AMIA Annu Symp Proc. 2017;2017:912–920.
  8. Nicholson A, Tate AR, Koeling R, Cassell JA. What does validation of cases in electronic record databases mean? The potential contribution of free text. Pharmacoepidemiol Drug Saf. 2011;20(3):321–324.
  9. Stein JD, Lum F, Lee PP, Rich WL, 3rd, Coleman AL. Use of health care claims data to study patients with ophthalmologic conditions. Ophthalmology. 2014;121(5):1134-1141.
  10. Herrett E, Thomas SL, Schoonen WM, Smeeth L, Hall AJ. Validation and validity of diagnoses in the General Practice Research Database: A systematic review. Br J Clin Pharmacol. 2010;69(1):4–14.

FIGURE. Vision Center of Excellence algorithm for classifying ocular injuries

TABLE 1. ICD-10 diagnosis codes for ocular injuries

TABLE 2. ICD-10 diagnosis codes for occular injury complications

TABLE 3. CPT and PCS codes used to classify ocular injury severity

TABLE 3 (cont). CPT and PCS codes used to classify ocular injury severity

TABLE 4. Counts of the 10 most commonly documented complications of ocular injuries (n=12,365)

You also may be interested in...

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Testosterone

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Neisseria gonorrhoeae Photo Courtesy of CDC: M Rein

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
Cover 1

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018
Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018
Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness & Combat Support
<< < ... 11 12 13 14 15 > >> 
Showing results 196 - 210 Page 14 of 15
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery