Skip to main content

Military Health System

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Image of Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DoD photo by Reese Brown). Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DOD photo by Reese Brown)

Recommended Content:

Medical Surveillance Monthly Report

Background

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force. Military studies of refractive surgery date back to 1993, but prior to full military utilization of laser refractive surgery, spectacles or contact lenses were the mainstay to correct refractive error among military personnel.1,2 Studies on the prevalence of refractive error, including myopia, hyperopia, and astigmatism, have shown that these conditions are quite common among active component service members.3,4 Reversing such error through refractive surgery has been documented to improve military readiness, operational capability, and the quality of life of U.S. service members.5

There are 26 Department of Defense (DOD) Warfighter Refractive Surgery Centers that offer a combination of vision-correcting procedures such as photorefractive keratectomy (PRK), laser assisted in situ keratomileusis (LASIK), laser epithelial keratomileusis (LASEK), small incision lenticule extraction (SMILE), implantable collamer lens (ICL), and refractive lens exchange (RLE).6–8 The capability to readily perform surgery with laser technology using the latest refractive surgery platforms highlights the importance of optimized vision to the DOD.

The COVID-19 pandemic introduced numerous obstacles which contributed to the reduction in the number of procedures performed. These obstacles included the closure of surgical centers and lack of temporary duty travel (TDY) patients. The pandemic also resulted in a shift to pre-operative testing for COVID-19 and virtual pre-operative briefings which could potentially result in delayed or cancelled refractive surgeries.

The objective of this report was to describe trends in total numbers of refractive surgeries over the last 21 fiscal years and to demonstrate how the early COVID-19 pandemic affected military refractive surgery trends.

Methods

Data on all refractive surgery cases performed at 26 DOD Warfighter Refractive Surgery Centers were compiled by the U.S. Navy refractive surgery program manager and presented at the 2021 virtual Military Refractive Surgery Safety and Standards Symposium annual meeting.6–8 These data are summarized in this report.

The surveillance period was from 1 Oct. 1999 through 30 Sept. 2020 (fiscal years 2000–2020). The surveillance population included active duty service members (active component and activated Reserve/Guard members) who met eligibility criteria for refractive eye surgery. Criteria for qualifying for refractive surgery may have differed among the services, but in general, service members had to have had at least 18 months left in their service commitments, a commander's authorization letter, and no adverse personnel actions. In addition, 3 Air Force locations performed refractive surgery on a small number of non-service member beneficiaries of the Military Health System as part of a research protocol (accounting for <0.03% of Air Force refractive surgical cases for fiscal year 2020).

Results

For fiscal years 2000–2020, a total of 746,950 refractive surgeries were reported from the 26 Warfighter Tri-Service Refractive Surgery Centers. The number of surgeries performed each fiscal year ranged from a low of 4,381 refractive surgeries in 2000 to a peak of 50,690 surgeries in 2005 (Figure 1) with an average of 35,569 surgeries per year. In fiscal year 2020, 20,270 refractive surgeries were performed which represents a 38.6% decrease from the number of cases performed in 2019 (n=33,039).

During the surveillance period, there were 363,058 surgeries performed at Army refractive centers, 216,568 at Navy refractive centers, and 167,324 at Air Force refractive centers. The number of surgeries for all services declined from fiscal year 2019 to fiscal year 2020 (Army, 39.8% decrease; Navy, 34.6% decrease; Air Force, 41.0% decrease) (Figure 1).

In 2020, the types of refractive surgery approximately consisted of 65.1% PRK (n=13,201), 27.6% LASIK/LASEK (n=5,585), 4.5% SMILE (n=920), 2.7% ICL (n=540), and 0.1% RLE (n=24) (Figure 2). The percentage distributions of type of refractive surgery were similar among all the services in 2020.

Editorial Comment

This report describes trends in the numbers of refractive surgeries performed during the 21 year surveillance period, including the COVID-19 pandemic. Since fiscal year 2000, the tri-service ophthalmology community conducted 746,950 vision corrective surgeries at 26 DOD Warfighter Refractive Surgery Centers. The large number of refractive cases reported and the amount of refractive surgery centers present in the DOD speaks to the valued importance of optimal vision in U.S. military members. In addition to the warfighter's improvement in quality of life, vision corrective surgeries are used frequently in the U.S. military due to the need and for improved preparedness and performance in operational tasks.3–5 An Air Force study from 2020 reported the prevalence of myopia in 767 Air Force Basic Military Trainees. Among the trainees, 45% were found to have myopia classified as greater than -0.5 D, and 2% of trainees were found to have high myopia classified as greater than -6.0 D.In 2019, Reynolds et al. reported that 51.1% of ocular care for service members during fiscal year 2018 was dedicated to refractive error-related disorders.9 A study published in 2017 demonstrated the excellent and comparable vision outcomes of Wave-Front Guided and Wave-Front Optimized PRK on military members in regard to marksmanship, visual performance, threshold target identification, and contrast sensitivity.10 These studies shed light on the importance of refractive surgery offered by the DOD.

When analyzing the effect of the COVID-19 pandemic, a decrease in the number of refractive surgery cases performed in the tri-service community was reported. Specifically, the total number of surgeries during fiscal year 2020 was comparable to the number of surgeries in fiscal year 2002, shortly after the procedures were first introduced. The pronounced decrease in the number of surgeries performed was undoubtedly due to factors related to the SARS-CoV-2 pandemic: shutdown of DOD Warfighter Refractive Surgery Centers, unavailability of TDY patients, pre-operative SARS-CoV-2 testing, difficulty with pre-operative virtual briefings, availability of N-95 masks, properly scheduling post-operative follow-up, and limitations on family members helping with patients after surgery. The reduced number of procedures observed in fiscal year 2020 is consistent with many published reports of reduced health care utilization during the COVID-19 pandemic.11 One such report demonstrated initial reduced demand for refractive surgery which subsequently rebounded in 2021.12

In fiscal year 2020, the majority of cases were PRK followed by LASIK/LASEK and SMILE, respectively. A trend toward PRK surgery in the military has been prevalent for years; however, there has been a shift towards LASIK especially among Navy surgery centers.13,14 Various reasons exist for the preference of PRK, which include surgeon's comfort with performing PRK over LASIK, previous military policies that prohibited LASIK for special forces, and the risk of traumatic corneal flap lifting following LASIK that cannot be attended to in an environment that is not readily equipped with an ophthalmologist (e.g., deployment, training, austere environments).15 With the introduction of SMILE in 2016 after the U.S. Food and Drug Administration approval, it has been increasingly implemented in the DOD.16 SMILE has shown promise with comparable, if not better, visual outcomes than PRK and more predictable outcomes and similar corneal biomechanical stability when compared to LASIK.17,18 The emergence of new refractive surgery techniques will continue to provide opportunity for advancement in military refractive surgery.

Limitations of this study include potential bias in data retrieval and documentation. Data were individually reported from each center and were not verified with medical coding. Additionally, refractive surgeries performed outside of Warfighter Refractive Surgery Centers were not captured in this analysis.

In summary, this report demonstrates the trend in refractive surgeries at the DOD Refractive Surgery Centers and reveals the decrease in refractive surgeries during the COVID-19 pandemic. Because of the instrumental role refractive surgery plays in gaining a strategic advantage for the U.S. military warfighter, surgical procedures still continued during this period and will most likely increase to pre-pandemic numbers as the COVID-related restrictions are lifted or conditions to handle COVID-related spread are improved. Future implications from the lessons learned during the COVID-19 pandemic will provide a framework on how to troubleshoot barriers to performing refractive surgery in the future.

Author affiliations: United States Air Force, Medical College of Georgia at Augusta University (2d Lt Brandon Sellers, BS); United States Air Force, Air Force Refractive Surgery Consultant, Joint Base Elmendorf-Richardson, Anchorage, AK (Lt Col J. Richard Townley, MD); United States Navy, Prior Navy Refractive Surgery Program Manager, Camp Lejeune, Jacksonville, NC (CAPT Corby Ropp, DO); United States Army, Army Refractive Surgery Program Manager, Defense Health Agency Refractive Surgery Board Chair, Brooke Army Medical Center, Ft. Sam Houston, TX (LTC Gary Legault, MD). Dr. Corby Ropp died during the creation of this manuscript but was instrumental in compiling the data.

Disclaimer: The contents, views, or opin­ions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

References

  1. Lattimore MR, Jr., Schrimsher RH. Refractive error distribution and incidence among U.S. Army aviators. Mil Med. 1993;158(8):553–556.
  2. Hammond MD, Madigan WP, Jr., Bower KS. Refractive surgery in the United States Army, 2000-2003. Ophthalmology. 2005;112(2):184–190.
  3. Reynolds ME, Taubman SB, Stahlman S. Incidence and prevalence of selected refractive errors, active component, U.S. Armed Forces, 2001-2018. MSMR. 2019;26(9):26–30.
  4. Reed DS, Ferris LM, Santamaria J, et al. Prevalence of myopia in newly enlisted airmen at Joint Base San Antonio. Clin Ophthalmol. 2020;14:133–137.
  5. Sia RK, Ryan DS, Rivers BA, et al. Vision-related quality of life and perception of military readiness and capabilities following refractive surgery among active duty U.S. Military service members. J Refract Surg. 2018;34(9):597–603.
  6. Legault, GL. Army refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  7. Townley, JR. Air Force refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  8. Ropp, C. Navy refractive surgery update. Military Refractive Surgery Safety and Standards Symposium, virtual. 1 January 2021.
  9. Reynolds ME, Williams VF, Taubman SB, Stahlman S. Absolute and relative morbidity burdens attributable to ocular and vision-related conditions, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(9):4–11.
  10. Ryan DS, Sia RK, Stutzman RD, et al. Wavefront-guided versus wavefront-optimized photorefractive keratectomy: Visual and military task performance. Mil Med. 2017;182(1):e1636–e1644.
  11. Moynihan R, Sanders S, Michaleff ZA, et al. Impact of COVID-19 pandemic on utilisation of health care services: a systematic review. BMJ Open. 2021;11(3):e045343. 
  12. Bickford M, Rocha K. Impact of the COVID-19 pandemic on refractive surgery. Curr Ophthalmol Rep. 2021:1–6.
  13. Stanley PF, Tanzer DJ, Schallhorn SC. Laser refractive surgery in the United States Navy. Curr Opin Ophthalmol. 2008 Jul;19(4)321–324.
  14. Gao H, Miles TP, Troche R, et al. Quality of vision following LASIK and PRK-MMC for treatment of myopia. Mil Med. 2021;usab071.
  15. Shih LY, Peng KL, Chen JL. Traumatic displacement of laser in situ keratomileusis flaps: an integrated clinical case presentation. BMC Ophthalmol. 2021;21(1):177.
  16. Dishler JG, Slade S, Seifert S, Schallhorn SC. Small-incision lenticule extraction (SMILE) for the correction of myopia with astigmatism: Outcomes of the United States Food and Drug Administration Premarket Approval Clinical Trial. Ophthalmology. 2020;127(8):1020–1034.
  17. Sia RK, Ryan DS, Beydoun H, et al. Visual outcomes after SMILE from the first-year experience at a U.S. military refractive surgery center and comparison with PRK and LASIK outcomes. J Cataract Refract Surg. 2020;46(7):995–1002.
  18. Cao K, Liu L, Yu T, Chen F, Bai J, Liu T. Changes in corneal biomechanics during small-incision lenticule extraction (SMILE) and femtosecond-assisted laser in situ keratomileusis (FS-LASIK). Lasers Med Sci. 2020;35(3):599–609.

FIGURE 1. Number of refractive surgery cases, by service from a Tri-Service Refractive Surgery Center, fiscal years 2000–2020

FIGURE 2. Refractive surgery cases, by service and type of procedure performed at a Tri- Service Refraction Surgery Center, fiscal year 2020

You also may be interested in...

Infectious Mononucleosis, Active Component, U.S. Armed Forces, 2002–2018

Article
7/1/2019
A specimen is tested for mononucleosis at the medical clinic on Ellsworth Air Force Base, South Dakota (U.S. Air Force photo)

Recommended Content:

Medical Surveillance Monthly Report

Zika Virus Surveillance in Active Duty U.S. Military and Dependents Through the Naval Infectious Diseases Diagnostic Laboratory

Article
7/1/2019
Anopheles merus mosquito. (CDC photo by James Gathany)

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Cyclosporiasis in a U.S. Air Force Training Population, Joint Base San Antonio–Lackland, TX, 2018

Article
6/1/2019
Cyclosporiasis

Diarrheal illnesses have an enormous impact on military operations in the deployed and training environments. While bacteria and viruses are the usual causes of gastrointestinal disease outbreaks, 2 Joint Base San Antonio–Lackland, TX, training populations experienced an outbreak of diarrheal illness caused by the parasite Cyclospora cayetanensis in June and July 2018.

Recommended Content:

Medical Surveillance Monthly Report

Female Infertility, Active Component Service Women, U.S. Armed Forces, 2013–2018

Article
6/1/2019
Human egg cell

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report | Women's Health

Norovirus Outbreak in Army Service Members, Camp Arifjan, Kuwait, May 2018

Article
6/1/2019
Norovirus are a group of related, single-stranded RNA, nonenveloped viruses that cause acute gastroenteritis in humans. (Photo Courtesy: CDC/Charles D. Humphrey

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Human Papillomavirus Vaccination Among U.S. Active Component Service Members in the Millennium Cohort Study, 2006–2017

Article
6/1/2019
HPV virus

The U.S. Millennium Cohort Study is a population-based prospective study that includes over 200,000 current and prior U.S. military service members.

Recommended Content:

Medical Surveillance Monthly Report

Offspring Sex Ratio of Male Active Duty U.S. Navy Submariners, 2001–2015

Article
6/1/2019
U.S. Marine Corps

The natural human sex ratio at birth (male:female) slightly favors males, and altered sex ratios might be indicative of exposure to reproductive hazards.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and healthcare burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Medical evacuations out of the U.S. Central Command, active and reserve components, U.S. Armed Forces, 2018

Article
5/1/2019
Airmen from the 19th Medical Group litter-carry a simulated patient onto a C-130J during an aeromedical evacuation training mission at Little Rock Air Force Base in 2019. (Photo Courtesy of U.S. Air Force)

The number of medical evacuations for battle injuries has decreased considerably since 2014. Most medical evacuations in 2018 were attributed to mental health disorders, followed by non-battle injury/poisoning; signs, symptoms, and ill-defined conditions; musculoskeletal disorders; and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, active component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

As in prior years, mental health disorders, pregnancy-related conditions, and injury/poisoning accounted for the majority (59.8%) of all hospitalizations among active component service members in 2018. However, the hospitalization rate for all causes was the lowest rate in the past 10 years.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and relative morbidity burdens attributable to various illnesses and injuries, non-service member beneficiaries of the Military Health System, 2018

Article
5/1/2019
A senior airman of 366th Medical Support Squadron pediatric clinic checks vitals of the child of its service member at Mountain Home Air Force Base in Idaho. (Photo courtesy of U.S. Air Force)

In 2018, mental health disorders accounted for the largest proportions of the morbidity and healthcare burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 years, musculoskeletal diseases accounted for the most morbidity and health care burdens, and among adults aged 65 years or older, cardiovascular diseases accounted for the most.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Illness and Injury Burdens, Recruit Trainees, Active Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Morbidity burdens attributable to various illnesses and injuries, deployed active and reserve component service members, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

Among service members deployed during 2018, injury/poisoning, musculoskeletal diseases, and signs/symptoms accounted for more than half of the total health care burden while deployed. Compared to the distribution of major burden of disease categories documented in garrison, a relatively greater proportion of in-theater medical encounters due to respiratory infections, skin diseases, infectious/parasitic diseases, and digestive diseases was documented.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory visits, active component, U.S. Armed Forces, 2018

Article
5/1/2019
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

Musculoskeletal disorders and mental health disorders accounted for more than half (52.6%) of all illness- and injury-related ambulatory encounters among active component service members in 2018. Since 2014, the number of ambulatory visits for mental health disorders has decreased, while the numbers of ambulatory visits for musculoskeletal system/connective tissue disorders, nervous system and sense organ disorders, and respiratory system disorders have increased.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 151 - 165 Page 11 of 13
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery