

INFORMATION PAPER ON THE IMPACT OF EXPOSURE TO HIGH GRAVITATIONAL FORCES

Traumatic Brain Injury Center of Excellence
Clinical Translation Office
dha.ncr.TBICoEResearch@health.mil
Health.mil/TBICoE

Note: The content provided in this product is current as of April 2025 and is subject to change as new findings become available.

RELEVANCE TO THE DEPARTMENT OF DEFENSE

As discussed in detail below, military pilots of high-maneuverable fighter aircraft are often exposed to sudden changes in G-force during training and combat, which can result in periods of loss of consciousness or other neurocognitive symptoms that may impact mission and personnel safety. The threshold for G-forces above which aircraft pilots experience adverse neurologic consequences, including LOC, is well-documented. Known protective measures are standard components of G-force awareness training required for all military aviators and pilots that operate high performance aircraft. However, the cumulative effects of multiple high G-force exposures on brain health and behavior have not yet been adequately investigated.

KEY POINTS & IMPACT TO THE WARFIGHTER

- Military pilots and crew of high-performance aircraft throughout the services are regularly exposed to high G-forces, which can cause transient conditions like an altered state of awareness and gravity induced LOC, or G-LOC; G-LOC specifically occurs upon exposure to forces at 9 G or above.
 - These effects are largely due to rapid physiologic shifts that occur within seconds of exposure, which are primarily related to a decrease in blood flow to the brain and decreased brain oxygen saturation.
- Evidence regarding the association of factors like height, weight, BMI, and exercise training with G-LOC incidence and G-force tolerance is inconclusive due to the limited number of studies in this area, as well as the conflicting findings among available studies.
- Many studies demonstrate the benefits of using G-suits, performing the anti-G-force straining maneuver, and undergoing human centrifuge training, each of which are standard components of G-force risk management strategies in the U.S. Air Force.
 - These measures are thought to improve tolerance by promoting cardiovascular adaptation to G-force exposure and preventing blood from pooling in the legs and feet that contributes to G-LOC.
- While the long-term cognitive and behavioral effects of multiple high G-force exposures are unclear, some studies indicate that senior military pilots exhibit

functional and cognitive changes in the brain consistent with adaptation to the cognitive challenges of frequent flight.

- Additional well-designed prospective studies are needed to evaluate the long-term cognitive and behavioral effects of multiple high G-force exposures among military pilots.

PURPOSE

This information paper reviews available evidence on the neurological impact of single and multiple high G-force exposures in pilots of high-performance aircraft.

BACKGROUND

Military pilots of high-performance aircraft have long reported serious physiologic responses, including hypoxia (decreased oxygen availability in body tissues); heat stress; dehydration; disruptions in circadian rhythm; and gravity-induced LOC, or G-LOC.¹ While advancements in the design of modern high-performance aircraft have improved pilot survivability during agile maneuvers, reports of G-LOC have been noted since 1929² with an estimated 9-20% of military pilots impacted.³⁻⁵ Pilots are exposed to high gravitational forces along six different axes. The force along the head-to-toe axis is the primary safety concern and is commonly referred to as G-force.⁶ One G is defined as the acceleration of an object due to the force of gravity on Earth, which is 9.806 meters per second squared. Military pilots of high-performance aircraft also report a variety of other behavioral, cognitive, and sensory symptoms, including poor response to auditory stimuli, memory difficulties, motor symptoms, euphoria, apathy, depersonalization, confusion, and a dreamlike state that occur with rapid onset following high G-force exposure and do not involve LOC.⁷ Brief periods of confusion and cognitive impairment in military pilots of high-performance aircraft, presumably associated with exposure to high G-forces, were first reported in the 1980s.^{8,9}

G-LOC likely occurs at or above 9 G because acceleration at that rate forces blood from the head to the feet, resulting in reduced blood flow to the brain and cerebral hypoxia or anoxia (defined as a complete lack of oxygen supply to the brain).⁹ The average human cerebral anoxic reserve time is 6-7 seconds at 9 G, meaning that a pilot has only 4-5 seconds to reduce acceleration before G-LOC occurs.¹⁰ Additionally, aircrew exposed to G-forces that are insufficient to cause G-LOC (6-8 G) can exhibit a transient altered state of awareness termed almost LOC, or A-LOC, which involves a wide variety of cognitive, physical, emotional, and physiological symptoms.⁸ One survey study of 65 active duty fighter pilots noted that nearly all had experienced at least one visual or cognitive disturbance in the high G-force environment, including grayout in 98%; blackout in 29%; A-LOC symptoms (such as abnormal sensation in limbs, disorientation, and confusion) in 52%; and G-LOC in 9%.⁵ Given these statistics, it is important to learn why these problems happen to mitigate them and maintain force readiness. Some research studies have also begun to evaluate the

effects of cumulative high G-force exposures with the aim of understanding and addressing health outcomes throughout a pilot's military service.

ACUTE PHYSIOLOGICAL RESPONSE TO HIGH G-FORCE EXPOSURE

Autonomic Responses

The autonomic nervous system's physiologic response to G-forces plays an important role in predicting the adverse effects of such exposures. While most studies report no clinically significant cardiac arrhythmias with high G-force exposure,¹¹⁻¹³ increases in heart rate have been reported in multiple studies.¹⁴ This increase in heart rate occurs because there is typically a decrease in blood pressure and blood pooling in the lower extremities upon exposure to high G-forces. The autonomic nervous system compensates by increasing heart rate through a response known as the baroreceptor reflex, which helps regulate blood pressure.⁶ How quickly the heart rate changes in response to high G-force exposure depends on several factors, including the level of G-force and the G-force tolerance of the human body, defined as the ability to withstand exposure to high G-forces.^{15,16}

Reduced Cerebral Oxygenation

Due to the reduced blood flow to the brain that occurs with exposure to high G-forces, the supply of oxygen to the brain also decreases, which can considerably impair neurocognitive function. The decrease in brain oxygenation that occurs with exposure to as low as 3-4 G can impair the ability to discriminate between visual stimuli,¹⁷ while higher G-force levels may result in other impairments like slowed reaction time.¹⁸ Brain oxygen saturation can be measured noninvasively using a technique known as near-infrared spectroscopy, or NIRS. This method uses the absorption of light at near-infrared wavelengths to measure changes in the oxygen saturation of specific molecules like hemoglobin to infer oxygen saturation within a tissue.¹⁹ One study used NIRS to investigate the relationship between brain oxygen saturation and the incidence of G-LOC or A-LOC, G-force level, duration of G-force exposure, and incapacitation time after G-LOC.¹⁹ The results showed that once brain oxygen saturation decreased to a certain level, G-LOC occurred regardless of the G-force level or the duration of exposure. Additionally, the longer brain oxygen saturation remained below this threshold, the longer the individual remained unconscious after G-LOC.¹⁹

Some have proposed that conditions like A-LOC and G-LOC occur because when the brain does not receive enough oxygen, it shuts down higher-order cognitive functions to prioritize sustaining life.²⁰ This hypothesis was supported in one study, which used data on oxygen saturation changes in specific brain regions following high G-force exposure to develop a computational model.²¹ The model accurately predicted performance on specific cognitive tasks using this information.²¹ In another study, nine volunteers from the Naval Air Warfare Center Aircraft Division were exposed to short 6, 8, and 10 G-force pulses of increasing duration until they experienced G-LOC while being monitored with NIRS.⁸ The participants

exhibited a number of physical, cognitive, and emotional symptoms consistent with A-LOC, including eye movements, confusion, amnesia, and difficulty forming words. Additionally, the study observed that these symptoms began when brain oxygen saturation decreased, and there was a faster change in brain oxygen saturation after G-force exposures that caused A-LOC than after asymptomatic G-force exposures.⁸

Electrophysiological Changes

In addition to changes in autonomic function and cerebral oxygenation, changes in brain activity following high G-force exposure have been observed in studies using EEG. In one study, 16 healthy male participants were subjected to two different hypergravity protocols: a continuous 2 G environment for 30 minutes; and 5 repeated 3-minute intervals of 2 G followed by rest.²² The results showed that the continuous 2 G exposure altered EEG activity in two specific brain regions and produced feelings of decreased motivation, while the intermittent exposure resulted in no EEG or mood changes.²² A centrifuge study of 10 individuals exposed to high G-forces resulting in G-LOC observed that 2 unique EEG waveforms appeared just prior to G-LOC and just prior to the return of consciousness and were associated with regional changes in brain oxygen supply measured by NIRS.²³ Participants performed tracking and mathematical tasks before and after G-LOC. When consciousness returned, the supply of oxygen to the brain was restored within approximately 15 seconds, but it took approximately 60 seconds for EEG and performance to recover. This finding suggests that after G-LOC, it takes more than a return to normal oxygen levels to recover cognitive function.²³ This hypothesis is supported by the abovementioned study on A-LOC, during which A-LOC symptoms continued well after brain oxygen saturation recovered.⁸

Vestibular Effects

Some studies have reported transient vestibular effects of high G-force exposure, though the duration and level of exposure appear to be contributing factors. One centrifuge study reported vestibular symptoms in 5 healthy participants subjected to a 5-minute 3 G exposure,²⁴ while another found no significant change in vestibular function after a 9 G exposure among 11 pilots.²⁵ Additional studies are needed to more precisely determine the vestibular effects of different G-force exposures.

Neuropathological Changes

In rodent studies, exposure to high G-forces resulted in increased injury biomarkers such as heat shock protein, and neuronal damage in various areas of the brain.^{26,27} While the release of heat shock protein is most pronounced with very high G-force exposure (greater than 10 G), it has also been observed with repeated exposure to subthreshold G-forces (less than 4 G).²⁶ One preclinical study also found that both hypergravity and simulated weightlessness can kill neurons and impair learning and memory.²⁸

In summary, the physiologic impact of rapid acceleration is well described in studies of pilots of high-performance aircraft. The most consequential effect is the pooling of blood in the lower extremities, which can cause cerebral hypoxia or anoxia. If the exposure is extreme (greater than 9 G) or prolonged (greater than 6-7 seconds), LOC is likely. Additionally, evidence suggests changes in cognitive function with high G-force exposure may involve reduced neuronal activity in specific brain regions in response to reduced blood flow and oxygen. While there is some preclinical evidence that frequent exposure to high G-forces may injure neurons, more human studies evaluating the neuropathological impact of multiple high G-force exposures are needed to confirm these findings.

FACTORS ASSOCIATED WITH G-FORCE TOLERANCE

Some studies have aimed to identify the specific factors related to G-force tolerance and the risk of G-LOC or other adverse effects of high G-force exposure. One such factor is the difference in cardiovascular response to high G-force exposure. A retrospective study of data collected from 873 Taiwanese Air Force trainee pilots over a 9-year period examined this relationship in pilots who were undergoing human centrifuge training,⁶ which is commonly used to assess the G-force tolerance of fighter pilots. In this study, the training protocol involved a progressive increase in exposure levels from 0-7.5 G. Those who passed the training (defined as those who could sustain the 7.5 G exposure for 15 seconds) had significantly lower resting heart rates at baseline and just before exposure to 7.5 G. Additionally, those who passed showed a significantly greater increase in heart rate during the first 1-5 seconds of exposure to 7.5 G.⁶ This finding of a greater increase in heart rate early during high G-force exposure was also reported in a separate study comparing military pilots who passed 9 G centrifuge training with those who did not.²⁹ Together, these findings suggest that those with higher G-force tolerance may have stronger baroreceptor reflex activity and may be less susceptible to G-LOC.⁶

Evidence is inconclusive on the extent to which factors like weight, body mass index, and height affect G-force tolerance. The Taiwanese study showed that those who passed the 7.5 G training had a significantly higher BMI and weight than those who failed, but there were no significant differences in height or age.⁶ Similarly, one study reported significantly higher BMI in individuals who passed 9 G centrifuge training than in those who did not.²⁹ Another study investigating aviators of U.S. Navy aircraft also reported there was no association of G-LOC incidence with pilot age or height, but unlike the prior studies, this study also found no association with weight.³⁰ Other studies have similarly reported no significant relationship between weight or height and G-force tolerance.³¹⁻³³

Evidence regarding the relationship between specific exercise programs and G-force tolerance is also inconsistent, but most studies report no association. Three small studies (less than 25 participants) found significant associations between strength training and G-force tolerance,³⁴⁻³⁶ with one of these studies reporting a 53% increase in G-force tolerance

among individuals who completed a weight training program.³⁵ However, this finding has not been replicated in larger studies. One study reported that factors including the type of exercise a pilot performed (aerobic exercise versus weight training), missed meals, and heat exposure were not associated with G-LOC incidence.³⁷ Similarly, other studies have reported no association of physical fitness or different exercise training programs with G-force tolerance^{38,39} or G-LOC incidence.⁴⁰ One of these studies, on 361 Korean Air Force pilots under age 40, reported that specific physical characteristics like muscle mass, strength, and endurance did not significantly differ between those who experienced G-LOC during centrifuge training and those who did not.⁴⁰

Some evidence suggests that the impact of G-force load may not be homogenous and could depend on the specific outcomes that are evaluated. In one study, a group of 10 pilot cadets subjected to accelerations in a centrifuge were compared with control pilots not subjected to G-forces; the results showed that attention switching was better in the group exposed to G-forces, but visuospatial working memory was worse.⁴¹ However, a key limitation of the study is that the level of G-forces in the exposed group was not specified, making it difficult to come to accurate conclusions on how G-force exposure may impact specific cognitive functions. Collectively, these data indicate that additional research is warranted to determine the environmental and physiological factors related to the adverse effects of high G-force exposure.

PROTECTIVE MEASURES

The main strategies to prevent G-LOC and help the fighter pilot sustain consciousness when exposed to high G-force include wearing a pressurized anti-G-force garment or G-suit, performing the anti-G-force straining maneuver or AGSM, and centrifuge training.^{37,42-45}

G-Suits

G-suits are whole-body garments designed to inflate in high G-forces to help prevent the shift of blood away from the brain, thereby helping to prevent G-LOC.^{46,47} Early studies on G-suits aimed to evaluate efficacy, safety, and design and implementation features that could improve their ability to prevent G-LOC.⁴⁶ An early study confirmed that G-suits increased the time pilots maintained cognitive performance and arterial oxygen saturation upon high G-force exposure (greater than 9 G).⁴⁸ A more recent study indicated that G-suit inflation can cause changes to brain function that vary depending on the degree of inflation. Although this may reflect changes in cognitive processes,⁴⁷ implications of these changes are unclear. Additionally, the study did not involve testing in a high G-force environment, so it is unclear whether such changes apply during flight. Regarding implementation factors, one study reported that the timing of G-suit inflation—immediate versus delayed inflation after G-LOC—did not affect incapacitation time.⁴⁹ While these studies support the utility of G-suits, other studies have identified notable risks, including airway closure, air trapping in the lungs, and atelectasis (collapse of the lung) upon G-suit inflation,⁵⁰ as well as abdominal pain with

extended-coverage G-suits, which provide more coverage of the lower body than standard G-suits.⁵¹

Anti-G-force Straining Maneuver

Another protective measure against G-LOC is the AGSM, which is commonly used along with G-suits. The AGSM is a technique during which the person pushes air out of the lungs against a closed glottis while simultaneously contracting the muscles in the calves, thighs, and shoulders to prevent blood pooling in the lower extremities.²⁹ Studies have long supported the value of the AGSM as a protective measure against G-LOC. In one study of U.S. Air Force fighter pilots from 1980-1999, 78 incidents of G-LOC occurred at an average of 8 G.⁵² Poor execution of the AGSM was cited in 72% of the mishaps, while fatigue and G-suit malfunction were cited in 19% and low G-force tolerance in 14%. Studies comparing individuals who passed high G-force centrifuge training with those who did not have also consistently reported significantly lower rates of effective AGSM execution in those who did not pass the training.^{6,29,53}

Centrifuge Training

The U.S. Air Force implemented human centrifuge training for pilots in the 1980s in response to reports of G-LOC-related accidents, with training priority going to those with fewer flying hours.^{37,54} Studies have since shown that high G-force centrifuge training, often performed in combination with the AGSM or G-suits, can improve G-force tolerance.⁵⁵⁻⁵⁷ During centrifuge training and with more flying hours, the repeated stimulation of the baroreceptor reflex, which helps regulate blood pressure in response to high G-force exposure, promotes cardiovascular adaptation to the G-forces seen during air combat maneuvers.^{37,55,56,58,59}

Due to the level of evidence regarding these measures, all three are now standard components of G-force risk management strategies and G-force awareness training in the U.S. Air Force.⁶⁰ Collectively, studies suggest that the incidence of G-LOC and A-LOC appears to be declining due to improved training of pilots and crew, the correct execution of the AGSM, and the use of structured conditioning programs to increase the general strength of muscles involved in the AGSM.^{3,6,45,53}

COGNITIVE AND BEHAVIORAL IMPACT OF MULTIPLE EXPOSURES

Cognitive Effects

Few studies have evaluated the cumulative effects of the hundreds of flights that fighter pilots undertake throughout their careers. It is not clear whether this frequent flying contributes to developing cognitive or behavioral signs consistent with brain injury or how frequently pilots fly before these signs occur. In fact, regarding the potential cognitive effects, one study reported better cognitive function among seasoned pilots than among

novice pilots when assessing processing speed (via Stroop reaction time), suggesting cognitive adaptations occur with flying experience.⁶¹ This finding is consistent with another study, which noted differences in functional connectivity in brain regions involved in motor, vestibular, and multisensory processing between fighter pilots and controls.⁶² These observations suggest neuroplasticity helps pilots cope with the challenges of flight. However, other studies have reported notable cognitive impairments among military pilots. One study demonstrated that military pilots performed worse on tasks related to working memory than controls.⁶³ Additionally, these impairments were significantly correlated with functional changes in the hippocampus assessed using functional magnetic resonance imaging.⁶³ Collectively, these findings indicate that the cognitive effects of flight among military personnel, as well as the impact of flight on brain function, are likely domain specific and do not universally reflect impairment. Moreover, these findings have not been associated with deficits in the pilots' functional performance or long-term outcomes.

Effects on Mental Health and Behavior

Although some studies have reported on the incidence of mental health and behavioral issues among military pilots, no studies have specifically assessed the possible contribution of multiple high G-force exposures to these issues. In fact, some studies report a lower incidence of them among pilots than among those in other military occupations. One study used medical surveillance data from all U.S. Air Force members serving from October 2003 to December 2018 to compare the prevalence of mental health problems, behavioral health problems, sleep disorders, and fatigue between pilots and nonpilots.⁶⁴ The results showed that pilots (including manned aircraft pilots and remotely piloted aircraft pilots) had a significantly lower incidence of mental and behavioral health outcomes than those in all other U.S. Air Force occupations.⁶⁴ The study also showed a lower incidence of fatigue among pilots, even though the incidence of sleep disorder diagnoses was similar between the pilot and nonpilot groups. While these findings do not support a higher prevalence of behavioral or mental health problems among pilots, factors such as the stigma of reporting and receiving treatment for these issues may contribute to their underestimation among pilots.⁶⁵ Additionally, no studies have reported on differences in mental and behavioral health diagnoses between novice and experienced pilots, making it difficult to infer whether cumulative flight experience contributes to changes in those areas over time.

Considerations for Future Studies

Given the current state of research in this area, there is a clear need for large prospective studies to define the long-term psychological, cognitive, and behavioral impacts of multiple exposures to high G-forces. Ideally, such studies should utilize validated tools for measuring cognitive, behavioral, and psychological health symptoms, as well as blood biomarkers of brain injury and advanced functional and anatomic brain imaging to assess physiologic adaptations to multiple high G-force exposures. To clarify the specific contribution of high G-

force exposure to these long-term risks among pilots, these studies should aim to carefully control for confounding factors, such as the stress of the military environment, as much as possible. This could be achieved by comparing pilots with nonpilots within specific military branches, rather than comparing military pilots with civilian controls. Such studies should also identify optimal protective anti-G-force strategies that pilots can use to minimize long-term health risks.

REFERENCES

1. Shaw DM, Harrell JW. Integrating physiological monitoring systems in military aviation: A brief narrative review of its importance, opportunities, and risks. *Ergonomics*. 2023;66(12):2242-2254. doi:10.1080/00140139.2023.2194592
2. Chongsup Kim GK. Integrated flight safety system to cope with gravity-induced loss of consciousness—Industrial perspective. *Int J Aeronaut Space Sci*. 2025;26:1363-1385. <https://doi.org/10.1007/s42405-024-00848-9>
3. Slungaard E, McLeod J, Green NDC, Kiran A, Newham DJ, Harridge SDR. Incidence of G-induced loss of consciousness and almost loss of consciousness in the Royal Air Force. *Aerospace Med Hum Perform*. 2017;88(6):550-555. doi:10.3357/amhp.4752.2017
4. Alvim KM. Greyout, blackout, and G-loss of consciousness in the Brazilian Air Force: A 1991-92 survey. *Aviat Space Environ Med*. 1995;66(7):675-7.
5. Rickards CA, Newman DG. G-induced visual and cognitive disturbances in a survey of 65 operational fighter pilots. *Aviat Space Environ Med*. 2005;76(5):496-500.
6. Morrissette KL, McGowan DG. Further support for the concept of a G-LOC syndrome: A survey of military high-performance aviators. *Aviat Space Environ Med*. 2000;71(5):496-500.
7. Shender BS, Forster EM, Hrebien L, Ryoo HC, Cammarota JP, Jr. Acceleration-induced near-loss of consciousness: The "A-LOC" syndrome. *Aviat Space Environ Med*. 2003;74(10):1021-8.
8. West JB. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft. *J Appl Physiol* (1985). 2013;115(1):145-9. doi:10.1152/japplphysiol.00094.2013
9. Tu MY, Chu H, Chen HH, et al. Roles of physiological responses and anthropometric factors on the gravitational force tolerance for occupational hypergravity exposure. *Int J Environ Res Public Health*. 2020;17(21). doi:10.3390/ijerph17218061
10. Wood E. Operational requirements for avoidance and eventual elimination of Gz-induced loss of consciousness (G-LOC) in flight. *Physiologist*. 1993;36(1 Suppl):S106-9.
11. Chung KY, Lee SJ. Cardiac arrhythmias in F-16 pilots during aerial combat maneuvers (ACMS): A descriptive study focused on G-level acceleration. *Aviat Space Environ Med*. 2001;72(6):534-8.
12. Tachibana S, Akamatsu T, Nakamura A, Yagura S. Serious arrhythmias coinciding with alteration of consciousness in aircrew during +Gz stress. *Aviat Space Environ Med*. 1994;65(1):60-6.
13. Whinnery AM, Whinnery JE, Hickman JR. High +Gz centrifuge training: The electrocardiographic response to +Gz-induced loss of consciousness. *Aviat Space Environ Med*. 1990;61(7):609-14.
14. Horméno-Holgado AJ, Clemente-Suárez VJ. Effect of different combat jet manoeuvres in the psychophysiological response of professional pilots. *Physiol Behav*. 2019;208:112559. doi:10.1016/j.physbeh.2019.112559
15. Forster EM, Whinnery JE. Reflex heart rate response to variable onset +Gz. *Aviat Space Environ Med*. 1988;59(3):249-54.
16. Gillingham KK. High-G stress and orientational stress: Physiologic effects of aerial maneuvering. *Aviat Space Environ Med*. 1988;59(11 Pt 2):A10-20.

17. Croft RJ, Kølegård R, Tribukait A, Taylor NAS, Eiken O. Effects of acceleration-induced reductions in retinal and cerebral oxygenation on human performance. *Aerospace Med Hum Perform.* 2021;92(2):75-82. doi:10.3357/amhp.5731.2021
18. Han WQ, Hu WD, Dong MQ, et al. Cerebral hemodynamics and brain functional activity during lower body negative pressure. *Aviat Space Environ Med.* 2009;80(8):698-702. doi:10.3357/asem.2267.2009
19. Ryoo HC, Sun HH, Shender BS, Hrebien L. Consciousness monitoring using near-infrared spectroscopy (NIRS) during high +Gz exposures. *Med Eng Phys.* 2004;26(9):745-53. doi:10.1016/j.medengphy.2004.07.003
20. Krnjević K. Early effects of hypoxia on brain cell function. *Croat Med J.* 1999;40(3):375-80.
21. McKinly RA, Gallimore JJ. Computational model of sustained acceleration effects on human cognitive performance. *Aviat Space Environ Med.* 2013;84(8):780-8. doi:10.3357/asem.2584.2013
22. Dern S, Vogt T, Abel V, Strüder HK, Schneider S. Psychophysiological responses of artificial gravity exposure to humans. *Eur J Appl Physiol.* 2014;114(10):2061-71. doi:10.1007/s00421-014-2927-5
23. Wilson GF, Reis GA, Tripp LD. EEG correlates of G-induced loss of consciousness. *Aviat Space Environ Med.* 2005;76(1):19-27.
24. McGrath BJ, Guedry FE, Oman CM, Rupert AH. Vestibulo-ocular response of human subjects seated in a pivoting support system during 3 Gz centrifuge stimulation. *J Vestib Res.* 1995;5(5):331-47.
25. Jia H, Cui G, Xie S, Tian D, Bi H, Guo S. Vestibular function in military pilots before and after 10 s at +9 Gz on a centrifuge. *Aviat Space Environ Med.* 2009;80(1):20-3. doi:10.3357/asem.2186.2009
26. Li JS, Sun XQ, Wu XY, Rao ZR, Liu HL, Cao YZ. Expression of heat shock protein after +Gz exposure and its protective effects on +Gz-induced brain injury. *Space Med Med Eng (Beijing).* 2002;15(6):391-6.
27. Shahed AR, Son M, Lee JC, Werchan PM. Expression of c-fos, c-jun and HSP70 mRNA in rat brain following high acceleration stress. *J Gravit Physiol.* 1996;3(1):49-56.
28. Sun XQ, Xu ZP, Zhang S, Cao XS, Liu TS. Simulated weightlessness aggravates hypergravity-induced impairment of learning and memory and neuronal apoptosis in rats. *Behav Brain Res.* 2009;199(2):197-202. doi:10.1016/j.bbr.2008.11.035
29. Tu MY, Chu H, Lin YJ, et al. Combined effect of heart rate responses and the anti-G straining manoeuvre effectiveness on G tolerance in a human centrifuge. *Sci Rep.* 2020;10(1):21611. doi:10.1038/s41598-020-78687-3
30. Johanson DC, Pheeny HT. A new look at the loss of consciousness experience within the U.S. Naval forces. *Aviat Space Environ Med.* 1988;59(1):6-8.
31. Webb JT, Oakley CJ, Meeker LJ. Unpredictability of fighter pilot G tolerance using anthropometric and physiologic variables. *Aviat Space Environ Med.* 1991;62(2):128-35.
32. Park M, Yoo S, Seol H, Kim C, Hong Y. Unpredictability of fighter pilots' g duration tolerance by anthropometric and physiological characteristics. *Aerospace Med Hum Perform.* 2015;86(4):397-401. doi:10.3357/amhp.4032.2015
33. Shin S. Association of Genotype, High-G tolerance, and body composition in jet aircraft aviators. *Mil Med.* 2024;189(3-4):486-492. doi:10.1093/milmed/usad248
34. Tesch PA, Hjort H, Balldin UI. Effects of strength training on G tolerance. *Aviat Space Environ Med.* 1983;54(8):691-5.

35. Epperson WL, Burton RR, Bernauer EM. The effectiveness of specific weight training regimens on simulated aerial combat maneuvering G tolerance. *Aviat Space Environ Med.* 1985;56(6):534-9.
36. Epperson WL, Burton RR, Bernauer EM. The influence of differential physical conditioning regimens on simulated aerial combat maneuvering tolerance. *Aviat Space Environ Med.* 1982;53(11):1091-7.
37. Lyons TJ, Harding R, Freeman J, Oakley C. G-induced loss of consciousness accidents: USAF experience 1982-1990. *Aviat Space Environ Med.* 1992;63(1):60-6.
38. Kölegård R, Mekjavić IB, Eiken O. Effects of physical fitness on relaxed G-tolerance and the exercise pressor response. *Eur J Appl Physiol.* 2013;113(11):2749-59.
doi:10.1007/s00421-013-2710-z
39. Bulbulian R, Crisman RP, Thomas ML, Meyer LG. The effects of strength training and centrifuge exposure on +Gz tolerance. *Aviat Space Environ Med.* 1994;65(12):1097-104.
40. Park J, Yun C, Kang S. Physical condition does not affect gravity-induced loss of consciousness during human centrifuge training in well-experienced young aviators. *PLoS One.* 2016;11(1):e0147921. doi:10.1371/journal.pone.0147921
41. Biernacki MP, Tarnowski A, Lengsfeld K, Lewkowicz R, Kowalcuk K, Dereń M. +Gz load and executive functions. *Aviat Space Environ Med.* 2013;84(5):511-5.
doi:10.3357/asem.3224.2013
42. Travis TW, Morgan TR. U.S. Air Force positive-pressure breathing anti-G system (PBG): Subjective health effects and acceptance by pilots. *Aviat Space Environ Med.* 1994;65(5 Suppl):A75-9.
43. Green ND, Ford SA. G-induced loss of consciousness: Retrospective survey results from 2259 military aircrew. *Aviat Space Environ Med.* 2006;77(6):619-23.
44. Lyons TJ, Kraft NO, Copley GB, Davenport C, Grayson K, Binder H. Analysis of mission and aircraft factors in G-induced loss of consciousness in the USAF: 1982-2002. *Aviat Space Environ Med.* 2004;75(6):479-82.
45. Lyons TJ, Marlowe BL, Michaud VJ, McGowan DJ. Assessment of the anti-G straining maneuver (AGSM) skill performance and reinforcement program. *Aviat Space Environ Med.* 1997;68(4):322-4.
46. United States Secretary of the Air Force. Air Force Pamphlet 11-419: G Awareness for Aircrew. Updated 2014. Available from: https://static.e-publishing.af.mil/production/1/af_a3_5/publication/afpam11-419/afpam11-419.pdf
47. Wood EH. Development of anti-G suits and their limitations. *Aviat Space Environ Med.* 1987;58(7):699-706.
48. Chen B, Ding L, Zhang S, Liu Z. Neural impact of anti-G suits on pilots: Analyzing microstates and functional connectivity. *Brain Cogn.* 2025;184:106269.
doi:10.1016/j.bandc.2025.106269
49. Albery WB, Chelette TL. Effect of G suit type on cognitive performance. *Aviat Space Environ Med.* 1998;69(5):474-9.
50. Forster EM, Cammarota JP, Whinnery JE. G-LOC recovery with and without G-suit inflation. *Aviat Space Environ Med.* 1994;65(3):249-53.
51. Borges JB, Hedenstierna G, Bergman JS, Amato MB, Avenel J, Montmerle-Borgdorff S. First-time imaging of effects of inspired oxygen concentration on regional lung volumes and breathing pattern during hypergravity. *Eur J Appl Physiol.* 2015;115(2):353-63.
doi:10.1007/s00421-014-3020-9

52. Balldin UI, Krock LP, Danielsson CH, Johansson SA. Centrifuge man-rating of a conceptual internal abdominal bladder restraint in an extended coverage anti-G suit. *Safe j.* 1996;26(2):42-6.
53. Sevilla NL, Gardner JW. G-induced loss of consciousness: Case-control study of 78 G-Locs in the F-15, F-16, and A-10. *Aviat Space Environ Med.* 2005;76(4):370-4.
54. Yun C, Oh S, Shin YH. AGSM proficiency and depression are associated with success of high-G training in trainee pilots. *Aerosp Med Hum Perform.* 2019;90(7):613-617. doi:10.3357/amhp.5323.2019
55. Gillingham KK, Fosdick JP. High-G training for fighter aircrew. *Aviat Space Environ Med.* 1988;59(1):12-9.
56. Eiken O, Keramidas ME, Sköldfors H, Kölegård R. Human cardiovascular adaptation to hypergravity. *Am J Physiol Regul Integr Comp Physiol.* 2022;322(6):R597-r608. doi:10.1152/ajpregu.00043.2022
57. Convertino VA, Tripp LD, Ludwig DA, Duff J, Chelette TL. Female exposure to high G: Chronic adaptations of cardiovascular functions. *Aviat Space Environ Med.* 1998;69(9):875-82.
58. Goswami N, Evans J, Schneider S, et al. Effects of individualized centrifugation training on orthostatic tolerance in men and women. *PLoS One.* 2015;10(5):e0125780. doi:10.1371/journal.pone.0125780
59. Newman DG, Callister R. Analysis of the Gz environment during air combat maneuvering in the F/A-18 fighter aircraft. *Aviat Space Environ Med.* 1999;70(4):310-5.
60. Dos Santos Rangel MV, de Sá GB, Farinatti P, Borges JP. Neuro-cardiovascular responses to sympathetic stimulation in fighter pilots. *Aerosp Med Hum Perform.* 2023;94(10):761-769. doi:10.3357/amhp.6223.2023
61. Dalecki M, Bock O, Guardiera S. Simulated flight path control of fighter pilots and novice subjects at +3 Gz in a human centrifuge. *Aviat Space Environ Med.* 2010;81(5):484-8. doi:10.3357/asem.2665.2010
62. Radstake WE, Jillings S, Laureys S, et al. Neuroplasticity in F16 fighter jet pilots. *Front Physiol.* 2023;14:1082166. doi:10.3389/fphys.2023.1082166
63. Cheng H, Sun G, Li M, Yin M, Chen H. Neuron loss and dysfunctionality in hippocampus explain aircraft noise induced working memory impairment: A resting-state fMRI study on military pilots. *Biosci Trends.* 2019;13(5):430-440. doi:10.5582/bst.2019.01190
64. Kieffer JW, Stahlman S. Mental health disorders, behavioral health problems, fatigue and sleep outcomes in remotely piloted aircraft/manned aircraft pilots, and remotely piloted aircraft crew, U.S. Air Force, 1 October 2003-30 June 2019. *Msmr.* 2021;28(8):14-21.
65. Martinez RN, Galloway K, Anderson E, Thompson C, Chappelle WL. Perspectives of mental health professionals on the delivery of embedded mental health services for U.S. Air Force airmen. *Psychol Serv.* 2023;20(4):988-1000. doi:10.1037/ser0000727