

RESEARCH REVIEW ON TRAUMATIC BRAIN INJURY AND PTSD

Traumatic Brain Injury Center of Excellence
Clinical Translation Office
dha.ncr.TBICoEResearch@health.mil
health.mil/TBICoE

Note: The content provided in this product is current as of December 2025 and is subject to change as new findings become available.

RELEVANCE TO WARFIGHTER BRAIN HEALTH

Post-traumatic stress disorder is a highly prevalent mental health concern among service members and veterans with a history of traumatic brain injury. Evidence suggests a complex relationship between PTSD and TBI; their overlap in symptoms challenges diagnosis and effective treatment. Comorbid PTSD and TBI can have a substantial impact on function and overall well-being in service members and veterans, with notable effects on cognitive function and other brain health outcomes. Clinicians treating service members and veterans with comorbid PTSD and TBI must carefully weigh treatment options as these patients typically present with more severe or persistent symptoms than individuals diagnosed with only one of these conditions. While studies have consistently shown the high prevalence and impact of comorbid PTSD among service members, continued research and education are needed to:

- Identify and proactively address factors that confer an increased risk for developing PTSD after TBI.
- Confirm the utility of novel strategies for assessing and monitoring comorbid PTSD and TBI, such as blood-based biomarkers and advanced neuroimaging methods that are developed with consideration of military-specific needs (including those that are readily available across clinical settings, ruggedized for operational use, and can interface within the existing technology landscape).
- Validate the use of traditional treatments for PTSD, as well as novel therapeutic strategies, in service members with comorbid PTSD and TBI.

KEY TAKEAWAYS

- Service members and veterans have an increased risk of developing comorbid mild TBI and PTSD.
- Due to overlapping symptomology and reliance on self-report methods, distinguishing between PTSD and mild TBI can be difficult. Patients should be screened for PTSD when being evaluated for mild TBI.
- The environment in which a mild TBI is sustained can impact clinical outcomes.
 - The risk of developing PTSD and severe PTSD symptoms is correlated more with combat-related mild TBI than non-combat related mild TBI.
 - Blast-related mild TBI may be associated with more severe PTSD symptoms than non-blast-related mild TBI.

- Combat exposure conveys an increased risk of multiple lifetime TBIs, which can also influence PTSD symptom severity.
- Advanced imaging techniques may eventually help clinicians better identify the structural and functional changes in the brain associated with TBI and PTSD and understand the origins of their neuropsychiatric symptoms. However, these techniques are not widely available for clinical use.
- Chronic neuropsychological impairments in domains like learning, memory, and executive function have been linked to PTSD and mild TBI individually. Whether the presence of both mild TBI and PTSD increases the incidence and severity of these impairments remains unclear.
- A holistic treatment plan that includes integrated behavioral health and rehabilitation interventions is recommended when managing service members and veterans with mild TBI and PTSD.
 - Clinicians should consider patient-centered treatment strategies and multidisciplinary coordinated care when treating patients with co-occurring mild TBI and PTSD.
 - Effectively treating PTSD can lead to less severe neurobehavioral outcomes, improved sleep, and decreased pain.
 - Engaging in cognitive rehabilitation may also have a positive impact on other outcomes including emotional regulation and functional performance. Several cognitive processing and behavioral therapies show promise for treating comorbid mild TBI and PTSD.
 - Newer treatments like repetitive transcranial magnetic stimulation are also being explored to treat comorbid symptoms.
 - Retention and compliance are necessary factors to consider when designing successful therapies. It is important for military providers to address barriers, provide psychoeducation, and consider family or significant others' involvement in planning and treatment.
- Nonpharmacological management of mild TBI and PTSD should always be the first choice for treatment.
 - Pharmacological treatment with SSRIs and SNRIs may be used in some cases for alleviating PTSD symptoms.

PURPOSE

The purpose of this research review is to provide an overview of studies on the diagnosis and treatment of comorbid TBI and PTSD, as well as the unique features associated with the presentation of both. This research review focuses specifically on mild TBI, the most common form of TBI, where possible.

BACKGROUND

TBI

In the DOD, TBI is defined as the alteration of brain function that results from exposure of the head to an external force. It is a prevalent public health concern¹; each year, about 2.5 million civilians visit emergency rooms for TBI-related care.² Most TBIs are mild, accounting for 81.8% of the over 515,000 TBIs diagnosed among service members between 2000 and 2024.³ In the military population, 5%–35% of service members who deployed to Iraq and Afghanistan sustained a mild TBI (also known as concussion) during their deployment.⁴ While service members can sustain mild TBIs through many mechanisms, the most common source during the past two decades has been blast exposure.⁴ Overpressure waves from explosions can cause a blast-related mild TBI, which accounts for 33% of mild TBIs in deployed service members.⁵ Evidence suggests that regardless of the origin, experiencing one mild TBI nearly doubles the risk of sustaining subsequent mild TBIs.⁶ This finding has important implications for recovery because people who have had multiple mild TBIs tend to have longer recovery times and more severe health problems.⁷

The diagnostic criteria for mild TBI following trauma to the head currently include loss of consciousness lasting up to 30 minutes and altered consciousness (such as confusion or disorientation) or post-traumatic amnesia that can last up to 24 hours.⁸ According to Department of Defense and VA clinical guidelines, mild TBIs should not show abnormalities on standard brain imaging such as CT scans.^{8,9} This guidance contrasts with guidelines for diagnosing mild TBI in civilians, which define mild TBIs by a Glasgow Coma Scale score of 13–15, regardless of the presence of CT abnormalities; however, the American Congress of Rehabilitation Medicine Diagnostic Criteria for mild TBI recommend using the qualifier “mild TBI with neuroimaging evidence of structural intracranial injury” when CT shows a TBI-related intracranial abnormality. Mild TBI patients with abnormal CT scan findings are also often described as having complicated mild TBI.¹⁰ Notably, in both military and civilian populations, CT scans are not usually indicated after a concussion. Indications for a CT are typically based on the presence of “red flags” as described in tools for evaluating individuals with a suspected head injury, such as the Military Acute Concussion Evaluation 2,¹¹ the Canadian CT Head Rule,¹² the New Orleans Criteria,¹³ and Traumatic Brain Injury Center of Excellence Clinical Recommendation on Neuroimaging following mild TBI.¹⁴

In 2025, the National Institutes of Health and National Institute of Neurological Disorders and Stroke published the results of an initiative to develop a new approach for characterizing TBI.^{15,16} The proposed classification system, known as the CBI-M framework, is named for the four components it incorporates: clinical assessments (including the GCS),¹⁷ blood-based biomarkers,¹⁸ neuroimaging,¹⁹ and psychosocial and environmental modifiers.²⁰ The CBI-M model, which can be used for multidimensional TBI characterization within 14 days of injury, aims to provide a more precise and individualized approach to TBI evaluation and could address some limitations of severity-based TBI characterization.¹⁵ However, some aspects of the model, particularly the blood-based biomarker and

neuroimaging components, may be difficult to implement for TBI evaluation in deployed settings and other resource-limited and austere environments.

Mild TBI patients may exhibit somatic, cognitive, or emotional symptoms soon after injury.²¹ Somatic symptoms include nausea, dizziness, headache, blurred vision, oculomotor deficits, auditory disturbances, vestibular dysfunction, and fatigue. The most common cognitive symptoms are delayed reaction time and disrupted memory and executive function. Emotional symptoms, such as disinhibition and emotional lability, are also common.²¹ In addition, mild TBI may influence the development of long-term cognitive impairments and psychiatric illnesses.²² There is some evidence that blast-related mild TBIs may be associated with a higher odds of symptoms like tinnitus, headache, and trouble concentrating than impact-related mild TBI.²³

PTSD

PTSD is a psychological condition resulting from exposure to a traumatic event often involving actual or threatened death, serious injury, or violation.²⁴ Exposure can include personal experience of these traumatic events or having a close relationship with a victim of an event. The National Comorbidity Survey Replication reported that in 2017, an estimated 3.6% of U.S. adults had PTSD, and the lifetime prevalence of PTSD was 6.8%.²⁵ The prevalence is higher in the military, and the DOD Health Related Behaviors Survey found that 10.5% of Army, 9.1% of Marines, 9.7% of Navy, and 3.9% of Air Force active duty service members had PTSD in 2015.²⁶ The prevalence of PTSD in the veteran population is estimated to be between 10% and 15%, with a lifetime prevalence ranging from 12% to 30%.²⁷ Service members diagnosed with PTSD are prone to self-stigmatization about the disorder, or judgements and beliefs that prevent them from seeking treatment.²⁸ Thus, cases may be underestimated.

The Diagnostic and Statistical Manual of Mental Disorders fifth edition, text revision (also known as the DSM-5-TR), recognizes PTSD with delayed expression, in which full diagnostic criteria are not met until at least six months post-trauma.²⁹ If symptoms occur earlier than one month post-trauma, the resulting condition is referred to as acute stress disorder.³⁰ A diagnosis of PTSD usually occurs when patients experience symptoms from four categories: intrusive thoughts; avoiding reminders; negative thoughts and feelings; and arousal and reactive symptoms. Symptoms associated with the intrusive-thoughts category involve experiencing vivid dreams, flashbacks, or involuntary memories. The avoiding-reminders category involves patients' inclination to actively avoid people, places, activities, or situations that can bring on distressing memories. Avoiding talking or thinking about traumatic events is also common. Patients experiencing negative thoughts and feelings display distorted beliefs about themselves and others, as well as chronic fear, horror, guilt, anger, and shame. Finally, arousal and reactive symptoms include irritability, angry outbursts, engaging in reckless activities, startling easily, inability to concentrate, and sleep disturbances.³⁰

The 11th edition of the International Statistical Classification of Diseases and Related Health Problems manual, developed by the World Health Organization, defined a subtype of PTSD not previously characterized in the DSM-5.³¹ This subtype, known as complex PTSD, or CPTSD, is believed to differ from PTSD due to its association with chronic or prolonged trauma, which is commonly experienced by service members who were prisoners of war.³² CPTSD can lead to greater impairment than traditional PTSD.³² CPTSD shares the same hallmark symptoms of PTSD, as well as additional symptoms that include trouble staying organized, difficulty managing emotions, low self-esteem, and troubled relationships.³³ When a group of veterans was evaluated based on guidelines for distinguishing PTSD from CPTSD, approximately 25–50% met the criteria for CPTSD.³⁴ A 2024 meta-analysis of studies of active duty service members and veterans reported a prevalence of 5–81%. This large range likely was due to the differences in combat exposure and prior PTSD diagnoses in the groups studied.³⁵ More research is needed to determine how CPTSD may affect military populations and how this clinical classification could impact diagnosis and treatment of PTSD within the Military Health System.

COMORBID TBI AND PTSD

PTSD is one of the most diagnosed psychiatric disorders associated with mild TBI in both civilians and service members. In fact, one 2023 study reported that PTSD was the third most common comorbidity to be diagnosed at two years post-injury in over 47,000 active duty and reserve service members who sustained a TBI (most of which were mild).³⁶ A separate study on civilians found that it is the fifth most common comorbidity reported at five years after mild TBI.³⁷ In a study of over 860,000 service members, among those who sustained a TBI of any severity while in service, PTSD diagnoses nearly doubled after injury.³⁸ Other studies have similarly reported that the risk of PTSD is elevated two-to-threefold after confirmed or probable mild TBI in veterans, service members, and civilians.^{39,40} The origin of PTSD in groups where mild TBI is comorbid is unclear. Experiencing a traumatic event that causes TBI may initiate a constellation of symptoms that secondarily lead to PTSD. However, PTSD can also either predate TBI, arise concurrently or after the onset of post-concussive symptoms, or be related to a separate event or series of events. For example, a retrospective analysis of over 14,000 veterans found that the pre-injury prevalence of PTSD in those who sustained a TBI was nearly sixfold higher than in veterans who did not sustain a TBI.⁴¹ Thus, these findings collectively support a bidirectional relationship between TBI and PTSD, wherein TBI can increase the risk of PTSD while PTSD can also increase the risk of sustaining a TBI.

Symptom Etiology

There is a strong, albeit unclear, relationship between PTSD and post-concussive symptoms. PTSD and mild TBI share some common symptoms, which can complicate PTSD diagnoses in comorbid groups.⁴² These common symptoms include insomnia, fatigue, irritability, depression, anxiety, emotional numbing, avoidance, trouble concentrating, memory deficits, and hyperarousal.⁴³ Evaluating PTSD symptoms can aid in predicting post-concussive

symptom onset and severity. In some studies with military or veteran participants, psychological factors were more predictive of post-concussive symptoms than TBI history.⁴⁴ PTSD can also influence treatment and recovery time and increase post-concussive symptom severity.^{45,46} This finding is particularly true in service members with PTSD who experience mild TBI, although misattribution of post-concussive symptoms to PTSD also is common in this group.⁴⁷ Many studies have shown that this relationship is reciprocal, as PTSD symptoms are also more severe in civilian, military, and veteran groups with probable or diagnosed mild TBI than in those with no history of mild TBI.⁴⁸

Prevalence

The prevalence rates of comorbid PTSD and TBI vary depending on the populations assessed. Some studies report that comorbid TBI and PTSD are significantly more common in service members than in civilians. Across all studies included in one systematic review, 11.0–18.6% of the civilians who sustained a TBI of any severity developed PTSD within two years of injury, while 48.2% of service members and veterans developed PTSD post-TBI.⁴⁹ An analysis of studies assessing only those with mild TBI found that 16.8% of civilians developed PTSD within two years of injury, and 48.8% of service members and veterans developed PTSD post-TBI.⁴⁹ Similarly, a 2024 meta-analysis reported a pooled prevalence of 11.8% in civilians with mild TBI⁵⁰, while another reported a pooled prevalence of 36% in active duty service members with mild TBI.⁵¹

Risk Factors

Many factors may be associated with an increased likelihood of developing PTSD following TBI. These include psychosocial and environmental factors, military-specific factors, TBI-related factors, psychological and cognitive factors, genetics, and other comorbidities.

Psychosocial and environmental factors associated with increased PTSD risk following TBI of any severity include fewer years of education, being unmarried, and younger age.⁵²⁻⁵⁴ Some studies report a higher risk of PTSD in females than in males following TBI.³⁷ However, in studies conducted on military populations and controlling for non-deployment related traumas, there are no significant sex differences in the rates of PTSD diagnosis following TBI.^{55,56} Regarding other psychosocial and environmental factors, lack of social support may play a role. In one study that was part of the Defense and Veterans Brain Injury Center-Traumatic Brain Injury Center of Excellence's 15 Year Longitudinal Study on TBI, a high proportion of 1,301 service members with TBI of any severity and persisting PTSD symptoms reported a lack of social participation.⁵⁷ Additionally, one civilian study that developed a model to predict PTSD risk following TBI (most of which were mild) reported that pre-injury unemployment was among the factors associated with an increased risk.⁵⁸ Finally, some studies indicate diet may play a role. One systematic review examined 44 studies on the relationship between dietary glutamate consumption and PTSD after TBI of any severity.⁵⁹ The findings revealed that individuals living in countries with a higher dietary consumption of glutamate were 15 times more likely to develop PTSD after TBI.

Characteristics unique to the military could increase the risk of developing PTSD after TBI. As previously mentioned, being a member of the military is itself a risk factor for PTSD diagnosis and greater PTSD symptom severity.⁶⁰ The dissonance between civilian and military populations could be attributed to the kinds of trauma each group may be exposed to. Combat exposure among service members is associated with an increased likelihood of sustaining multiple lifetime TBIs, and the combination of these two factors yields greater PTSD symptom severity.⁶¹ It is unclear whether specific military occupations are associated with a higher risk. One study comparing the prevalence and severity of PTSD between special operations forces and conventional forces personnel reported no significant differences in PTSD symptom severity during the 10 years after TBI of any severity.⁶² Factors that have been associated with an increased risk include a history of combat deployment and military service for longer than four years. In one study, these two factors significantly increased the likelihood of PTSD diagnosis at one year after moderate to severe TBI.⁶³

Several factors related to the TBI itself may be associated with an increased risk of developing PTSD. Most studies indicate that mild TBI is more frequently associated with a higher incidence of PTSD and more severe PTSD symptoms than moderate or severe TBI.^{57,62,64,65} It is plausible that the loss of consciousness and amnesia associated with more severe TBIs may protect against developing PTSD.⁶⁶ However, some studies dispute this finding, showing that the risk of developing PTSD increases with the severity of deployment-related TBI and blast exposure among those in the military.⁶⁷⁻⁶⁹ Regarding other TBI-related factors, sustaining multiple TBIs, mild TBIs with extracranial injuries, and TBIs of any severity resulting from violence increase the risk for developing PTSD and more severe PTSD symptoms.^{58,70,71} The environment in which a TBI is sustained may also play a role. Rates of PTSD are higher after deployment-related or combat-related TBI of any severity than after nondeployment-related or noncombat TBI.^{72,73} Additionally, TBIs of any severity sustained before military service are associated with less severe PTSD symptoms than those sustained during service.⁷³ The increased risk could be due to blast exposure. Blast-exposed service members can experience an increase in PTSD symptom severity up to five years post-injury, suggesting that an evolving mental health burden is related to this TBI mechanism.⁷⁴

Among the psychological factors associated with the risk of PTSD, morally injurious events have emerged as important to consider and may be a risk factor for post-concussive symptoms in veterans with mild TBI.⁷⁵ These events include witnessing, committing, or failing to prevent an action that violates a fundamental moral belief system⁷⁶ or an event that produces a sense of betrayal by entrusted authorities.⁷⁷ Moral injury is associated with an increased risk of a variety of mental health disorders among service members and veterans with TBI of any severity, including suicidality⁷⁸ and PTSD. In one study, veterans who screened positive for current PTSD or depression were more likely to have experienced a potentially morally injurious event.⁷⁹ Events involving betrayal or perpetration were linked to a two-to-three times higher chance of having PTSD, depression, or both.⁷⁹

Other psychological and cognitive factors may be associated with an increased risk of PTSD following TBI. These include greater mood fluctuations,⁸⁰ difficulty regulating behavior,⁸¹ and

lower distress tolerance,⁸² which have each been associated with PTSD incidence and severity in both veterans and active duty service members with TBI of any severity. While these factors have important differences, they each relate to an individual's ability to withstand or regulate shifts in mood or emotion. Reporting higher levels of anger has also been associated with PTSD symptoms in combat veterans and active duty service members.⁸³ Poorer pre-deployment inhibitory control and sustained attention, as well as poor perception of preparedness for deployment are also potential cognitive risk factors for post-deployment PTSD in military personnel.⁸⁴

Genetic risk factors may moderate the relationship between mild TBI and PTSD. Having the ε4 allele of the apolipoprotein E4 gene is associated with poorer long-term clinical outcomes following all severities of TBI than having the ε2 or ε3 alleles.⁸⁵ One study examined the relationship between APOE genotype and neurocognitive function in service members and veterans with a remote history of TBI of any severity. Those with the APOE ε4 allele performed significantly worse on tests of memory than those who did not possess the APOE ε4 allele.⁸⁶ However, TBI severity and APOE ε4 status did not show a significant interactive effect on cognitive function, and the authors concluded that one potential reason for this finding is that PTSD symptom severity may play a greater role.⁸⁶ However, some studies dispute these findings. One study examining over 130,000 veterans found no association between APOE ε4 genotype and PTSD severity or diagnosis, combat exposure severity, or comorbid TBI and PTSD.⁸⁷ Thus, more research is warranted to gain a comprehensive understanding of how APOE gene variants affect PTSD incidence and outcomes.

Multiple genes in addition to APOE may interact to confer an increased risk of PTSD following mild TBI.^{50,88,89} Polygenic risk scores, which are calculated using data from genome-wide association studies, can be used to estimate an individual's overall genetic susceptibility and risk for a disease based on its known risk variants.⁹⁰ In one study, investigators found that individuals of European descent who had the highest polygenic risk scores for PTSD had a nearly fourfold higher odds of developing PTSD during the six months after mild TBI than those with the lowest scores.⁸⁸ This finding indicates that with further study, an individual's polygenic risk score for PTSD could be used along with other clinical data to predict the need for early intervention to prevent PTSD development following mild TBI.

Finally, having other comorbidities before or after sustaining a TBI plays an important role in the risk of developing PTSD. One of the most common risk factors for developing PTSD after mild TBI is acute stress disorder, which, if diagnosed within 12 months after a mild TBI, doubles the risk of developing PTSD.⁹¹ Other risk factors that increase the likelihood of developing PTSD or more severe PTSD symptoms in veterans included alcohol and substance misuse, smoking, history of chest pain, and chronic pain.^{92,93}

Impact

Comorbid mild TBI and PTSD have been associated with a variety of adverse outcomes, including increased pain-related disability, impacting satisfaction with and quality of life.⁹⁴ Individuals with comorbid PTSD and TBI (of all severities) report lower quality of life across

all domains of health⁹⁵⁻⁹⁷ and worse behavioral functioning.^{44,97} Additionally, service members with PTSD and those who sustain a deployment-related TBI are significantly more likely to be found “not medically ready” for duty than those without PTSD or TBI.⁹⁸ Among service members and veterans with TBI, those with comorbid PTSD symptoms demonstrate lower physical, emotional, and cognitive functioning as well as more depressive symptoms.^{57,99,100} Headache, suicidal impulses, dizziness, self-harm, chronic pain, substance use disorder, sleep disturbances, cumulative disease burden, photosensitivity, cardiovascular risk factors, and polypharmacy have also been documented with comorbid TBI and PTSD.^{95,101-108}

Comorbid PTSD and TBI may also increase the risk of developing neurodegenerative diseases, such as Parkinson’s disease,¹⁰⁹⁻¹¹¹ Alzheimer’s disease, Lewy body disease, other dementias, and mild cognitive impairment.^{112,113} Among veterans with European ancestry, two studies have further demonstrated that the risk of Alzheimer’s disease and related dementias is even higher for those with PTSD and TBI who also have the APOE ε4 genotype.^{114,115} However, research leveraging neuroimaging or blood biomarkers of neurodegenerative disease have found no association of comorbid PTSD and TBI with neurodegenerative pathologies.¹¹⁶⁻¹¹⁸ Thus, additional investigation is required to better understand the long-term impact of comorbid PTSD and TBI.

Comorbid PTSD and mild TBI can have an impact on social outcomes, including reduced psychosocial function, challenges operating a motor vehicle, lower return-to-work rates, and increased incidence of intimate partner violence.^{119,120} Relatedly, one study showed that service members who reported being dissatisfied in their relationships with their intimate partners had worse scores on tests for PTSD symptoms of irritability, aggression, situational avoidance, and distressing dreams and flashbacks.¹²¹ Caregivers of service member and veterans are also impacted by co-occurring PTSD and mild TBI.¹²² Increased hostility and low emotional self-awareness after TBI can negatively impact caregiver quality of life, relationship satisfaction, and family functioning.¹²³⁻¹²⁵ These outcomes can be partially attributed to challenges with service members reintegrating into the family following deployments.¹²⁶

DIAGNOSTIC AND ASSESSMENT TOOLS

Diagnosis of PTSD and mild TBI based on symptoms alone can be difficult due to considerable symptom overlap and the lack of objective tools for understanding and differentiating symptom etiology. As described above, mild TBI diagnosis requires a clinician’s assessment, as well as a precipitating injury that results in a loss of consciousness (up to 30 minutes), altered consciousness, or post-traumatic amnesia.⁸ The Neurobehavioral Symptom Inventory and the Rivermead Post-Concussion Symptoms Questionnaire are self-reporting tools that can be used to determine post-concussive symptom severity.¹²⁷ Both instruments provide a list of symptoms (22 on the NSI; 16 on the RPQ) and ask respondents to indicate severity on a five-point scale. The NSI also has two items that invite the test-taker to name a symptom and provide a severity rating. Several factor analysis studies have been performed that seek to group symptoms to improve

interpretation of the results.^{128,129} The resulting factor structures vary, but one comparative study found that, for the NSI, a three-factor structure including vestibular and somatic, cognitive, and mood and behavioral factors provided the best fit for a sample of Operation Enduring Freedom and Operation Iraqi Freedom veterans.¹²⁸ Normative tables have been created for the NSI, which may be useful in comparing post-deployment NSI questionnaires to peer-matched demographics to detect potential medical concerns.¹³⁰ However, additional studies have determined that, while the NSI is a reliable metric for determining psychological stress, it does not reliably predict changes in functioning.¹³¹

Neither the NSI nor the RPQ are diagnostic, in part due to the high base rate of these symptoms among non-injured populations¹³² and in part because a number of symptoms on these scales are also associated with PTSD and other psychological conditions. The Clinician-Administered PTSD Scale, or CAPS, is widely used for PTSD diagnosis. The CAPS was updated to reflect revisions to the criteria for PTSD defined in the DSM-5, so the preferred version is the CAPS-5.¹³³ PTSD checklists for the military and civilians, known as the PCL-M and PCL-C respectively, have also been updated to the PCL-5 to reflect DSM-5 changes and are common tools for assessing symptom severity.¹³⁴ To support the analysis of changes in PTSD symptoms over time following the introduction of the PCL-5, investigators at the VA developed a crosswalk to predict PCL-5 scores using data from the PCL-C.¹³⁵ A separate study reported that predicted PCL-5 scores obtained using this method had near perfect agreement with observed PCL-5 scores in a sample of service members and veterans with TBI, suggesting this approach is applicable to this population.¹³⁶

The 2023 VA/DOD *Clinical Practice Guideline for Management of Posttraumatic Stress Disorder* recommends that patients should be screened for PTSD annually during deployment cycles and during the first five years following separation from service.¹³⁷ The DOD includes screening for PTSD in the Post-Deployment Health Assessment (DD Form 2796), Post-Deployment Health Reassessment (DD Form 2900), and Deployed Mental Health Assessment (DD Form 2978). However, the most commonly used instrument in the VA and DOD is the Primary Care PTSD Screen, or the PC-PTSD-5, which is specifically designed for use in primary care settings.¹³⁸ The five questions on the screen relate to avoidance, arousal, vigilance, dissociation, and nightmares. If the patient responds “yes” to any question, the screen is considered positive, and the patient is referred for further assessment. The PC-PTSD-5 has good diagnostic utility and can accurately detect PTSD in the VA primary care setting.¹³⁹ However, one civilian study showed that it is less accurate at detecting PTSD in individuals with persistent post-concussive symptoms than the Generalized Anxiety Disorder-7.¹⁴⁰ The study also found that the combined use of the PC-PTSD-5 and the GAD-7 was more accurate at detecting PTSD in this sample of mild TBI patients than the PC-PTSD-5 alone.

Post-concussive and PTSD symptom instruments rely primarily on self-reporting, so most tools for assessing mild TBI and PTSD should be used in conjunction with clinician assessment. In a study using the Minnesota Multiphasic Personality Inventory-2-Restructured Form symptom validity test, many treatment-seeking veterans of Operation Enduring Freedom and Operation Iraqi Freedom were prone to exaggerate cognitive, post-

concussive, and PTSD symptom severity. These self-reported symptoms did not agree with performance on more objective measures.¹⁴¹ To address this problem, many commonly used tools such as the NSI have additions like the Validity-10 scale that can help identify exaggerated symptom reports in patients with comorbid mild TBI and PTSD or other psychological disorders.¹⁴² As individuals with mild TBI and comorbid psychiatric conditions like PTSD are more likely to fail these validity measures, it is important to take a holistic approach to evaluating their care needs.¹⁴³

Assessments that include structured interviews can help identify lifetime history of mild TBI. The Veterans Health Administration TBI Clinical Reminder is one structured interview developed to support diagnosis of TBI specifically in veterans.¹⁴⁴ In addition to these interviews, researchers are exploring assessments that provide objective data on vestibular and motor function in those with PTSD and mild TBI history.¹⁴⁵

Biomarkers

Researchers are investigating biomarkers to identify unique indicators of comorbid PTSD and mild TBI occurrence that could aid in the differential diagnosis of their symptoms or predict treatment response.¹⁴⁶ The most commonly studied include brain-derived proteins like tau; neurofilament light chain, or NfL; glial fibrillary acidic protein, or GFAP; and ubiquitin carboxyl-terminal hydrolase L1, or UCH-L1.¹⁴⁷ Notably, UCH-L1 and GFAP are recommended as part of the CBI-M model of acute TBI characterization (0–24 hours post-injury) and are components of common commercially available blood-based assays for TBI like the i-STAT TBI test.¹⁴⁸ One study measured these four proteins in service members with TBI of any severity and healthy controls.¹⁴⁸ The results showed that tau and GFAP levels measured within 12 months of head injury could predict the progression of PTSD symptoms at the follow-up 2 or more years after injury. However, other studies have shown conflicting findings,¹⁴⁹ indicating additional research is required to determine the utility of these biomarkers in predicting PTSD after TBI.

One systematic review evaluated 16 studies on genetic and peripheral biomarkers of comorbid PTSD and TBI, including 15 that specifically evaluated service member or veteran samples.¹⁵⁰ Of all the biomarkers examined, only the inflammatory marker interleukin-6, or IL-6, consistently correlated with comorbid TBI and PTSD status across multiple studies.¹⁵⁰ However, the nonspecific nature of IL-6 function challenges its use in clinical practice. Researchers have also investigated the ability of other biomarkers (including standard clinical blood tests,¹⁵¹ phospholipids (a key component of cell membranes),¹⁵² RNAs,¹⁵³ and vocal biomarkers¹⁵⁴), as well as technologies like EEG¹⁵⁵ and MEG¹⁵⁶ to characterize subjects with PTSD and mild TBI, but these approaches are still being evaluated for clinical use.

NEUROPSYCHOLOGICAL MANIFESTATIONS OF MILD TBI AND PTSD

Common Neuropsychological and Neurocognitive Tests

Neuropsychological tests are used to evaluate cognition, mood, social functioning, and motivation. Commonly administered computerized neurocognitive assessment tools or NCATs for mild TBI include the Automated Neuropsychological Assessment Metric or ANAM; the Cognigram; and the Immediate Post-Concussion Assessment and Cognitive Testing or ImPACT ([Table 1](#)).¹⁵⁷ Of these, the ANAM and ImPACT have been cleared by the FDA specifically as tools to aid in the assessment of individuals with suspected head injury.¹⁵⁸ The ANAM was developed by the DOD to measure processing speed, reaction time, memory, and cognitive efficiency. The DOD requires that the fourth version, ANAM4 TBI-MIL,¹⁵⁹ be performed on service members within one year prior to deployment as a baseline and following a diagnosed mild TBI.¹⁶⁰

For PTSD, many neurocognitive tests can be used ([Table 2](#)). The domains most commonly examined with these tests include verbal learning and memory, working memory, visual processing speed, verbal performance IQ, visual attention and task switching, and executive function.¹⁶¹ When assessing comorbid occurrence, a battery of tests is used to objectively assess performance in areas affected by both mild TBI and PTSD.¹⁶² The battery should include assessments for subjective cognitive complaints and objective measures of cognitive performance to better understand the impact of trauma-related psychopathology.¹⁶²

Neurocognitive and neuropsychological changes can greatly affect quality of life for those with PTSD or mild TBI.¹⁶³ Differentiating cognitive impairment caused by mild TBI from that caused by PTSD is imperative for determining how to target therapeutic interventions to improve performance in comorbid groups. For example, attributing PTSD symptoms to mild TBI can reduce adherence to effective treatment protocols.¹⁶⁴ Neuropsychological testing can determine discrete functional changes associated with each condition. This information can allow clinicians to prescribe differential cognitive or behavioral therapy that addresses both sets of deficits.

Neuropsychological and neurocognitive tests are not indicated for diagnostic purposes; however, they do provide objective evaluations of neuropsychological manifestations of mild TBI, PTSD, and comorbid occurrence. In one study, neuropsychological test performance was found to be more robust than neuroimaging measures in differentiating distinct symptom profiles in active duty service members with mild TBI and PTSD.¹⁶⁵ Objective information on cognitive performance may be important for determining return to duty, treatment benefits, and other decisions. However, it is important to note that there is often discordance between objective and subjective cognitive complaints among individuals with mild TBI and PTSD.¹⁶⁶⁻¹⁶⁹ This finding could be due to the limited sensitivity of some assessments in individuals with milder head injuries. Thus, it is crucial to consider both objective and subjective cognitive and neuropsychological complaints when developing strategies for intervention.^{166,168}

Additional neuropsychological assessment tools are being tested to determine how well they evaluate comorbid mild TBI and PTSD symptoms in military samples. For example, a cognitive battery in the iPad-based NIH Toolbox has been used to examine mild TBI and PTSD symptom severity and resulting cognitive deficits in comorbid groups. This tool was able to detect greater cognitive impairment in the comorbid group than in groups with PTSD or mild TBI only.¹⁷⁰ The tool also enables researchers to accurately assess neuropsychological function in large samples and in conditions that require readily available testing and rapid results.¹⁷⁰ Though the NIH Toolbox demonstrates potential for usefulness in the military population, further research is needed to determine clinical utility.

Neuropsychological and Neurocognitive Findings: Mild TBI Only

Within 24 hours of mild TBI, decreases in neuropsychological test performance can occur in the domains of attention, language, memory, visual perception, and executive function.¹⁷¹ Impairments in attention, language, memory, and executive function can also occur even six months or longer after injury.^{172,173} Reaction time impairments on the ANAM appear to be sensitive to mild TBI in the active duty military population.¹⁷⁴ Some studies have reported that service members who have sustained a blast-related TBI show a decline in simple reaction time on the ANAM within days of injury,¹⁷⁵ which is associated with changes in neuroimaging metrics.¹⁷⁶

Although several other studies also report lasting impairments, mild TBI patients who are months to years post-injury and do not have comorbid psychological health conditions do not consistently demonstrate poorer neuropsychological test performance than those without TBI. However, other studies have found that impairments can arise years following both blast and non-blast mild TBI.⁷⁴ These variations in the likelihood of chronic deficits may be attributed to the number of mild TBIs sustained, as a single mild TBI is not generally associated with lasting deficits while multiple mild TBIs may convey a higher risk.¹⁷⁷ One study of over 1,300 service members and veterans with one or more lifetime TBIs observed no significant association between the number of blast-related TBIs sustained and cognitive performance.¹⁷⁸ This finding indicates that factors other than TBI history may also contribute to the likelihood of cognitive decline after TBI. For example, one study reported that cognitive impairment following mild TBI was more common in older service members (25–40 years) than in younger ones (24 years and younger).¹⁷⁹ Thus, additional studies should aim to investigate how various demographic and injury-related factors may interact to contribute to the risk of cognitive impairment after TBI.

While cognitive impairment following TBI can occur, it is important to emphasize that recovery is possible. One study of over 1,000 service members and veterans found that those who sustained a deployment-related mild TBI consistently showed worse cognitive performance across the 5-year study period than those who did not; however, cognitive function did slightly improve by the end of the study period in the TBI group.¹⁸⁰ This finding highlights the value of conducting additional long-term prospective studies to evaluate the evolving and dynamic nature of TBI outcomes and identify factors associated with a higher risk of poor recovery.

Neuropsychological and Neurocognitive Findings: PTSD Only

PTSD alone is associated with decreased neurocognitive performance in several domains, especially verbal learning, processing speed, attention, and working memory, according to a meta-analysis of data from 1,779 PTSD patients including military and civilian trauma survivors.¹⁸¹ These findings are consistent with neuropsychological studies showing lower performance in veterans with PTSD than in veteran controls without PTSD.¹⁸² PTSD is also associated with impairments in episodic memory and executive function.^{183,184} Severe PTSD symptoms and PTSD diagnosis are correlated with higher rates of impaired neuropsychological outcomes, including development of attention deficit hyperactivity disorder.^{185,186} Together, these data suggest that PTSD and subclinical PTSD symptoms may be bidirectionally related to the cognitive impairments observed among PTSD patients with mild TBI history. The origin of these impairments cannot be determined from neuropsychological testing, however, so further studies are needed to understand how discrete factors in the constellation of PTSD symptoms can influence cognition.

Neuropsychological and Neurocognitive Findings: Comorbid Group

Several studies have shown that those with a PTSD diagnosis or significant PTSD symptoms in combination with mild TBI history performed significantly worse on neuropsychological tests than those with PTSD only, mild TBI only, or controls. This finding has been reported in service members,¹⁸⁷ veterans,¹⁸⁸ and civilians.¹⁸⁹ One study found that among individuals with PTSD, those with higher low-level blast exposure showed worse performance on tests of immediate and delayed recall than those with less blast exposure.¹⁹⁰ The study also found that PTSD and deployment-related TBI interacted to impact memory and processing speed. Similarly, other studies have shown that among service members who sustain a blast-related mild TBI, the presence of PTSD symptoms is correlated with neuropsychological deficits.¹⁹¹ Impaired long-term working memory and lower cognitive flexibility have also been associated with probable PTSD in adults with TBI history.¹⁹² In contrast, some studies report no significant neuropsychological differences between those with mild TBI history and PTSD and those with only one condition.¹⁹³ These inconsistent findings may be due to the characteristics of study participants, study design, outcomes, or other factors and suggest additional research is needed.

CHANGES IN THE BRAIN ASSOCIATED WITH MILD TBI AND PTSD

Neuroimaging

Imaging techniques provide valuable tools to examine the brain and detect alterations resulting from PTSD and mild TBI, as well as to identify changes unique to their comorbid occurrence.¹⁹⁴ These techniques are not yet routinely used for clinical assessments of patients, as their predictive and diagnostic capabilities require study in larger clinical samples. They do, however, reveal valuable mechanistic and neuroanatomical information that may prove to have clinical utility.

Traditional CT scans and MRI have not been able to differentiate mild TBI alone from mild TBI comorbid with PTSD. However, brain volume measurements show promise for identifying those with comorbid PTSD and mild TBI history.¹⁹⁵ Other imaging approaches that may warrant further study include advanced MRI techniques such as functional MRI; diffusion tensor imaging, or DTI; diffusion kurtosis imaging; and single photon emission computed tomography, or SPECT. Limited evidence shows that SPECT has potential to help evaluate those with PTSD, mild TBI, or both.¹⁹⁶ Fluid-attenuated inversion recovery MRI approaches have been used to characterize white matter hyperintensity in these populations.¹⁹⁷ DTI demonstrates mixed capabilities for matching white matter integrity to symptom severity in comorbid groups; however, it remains promising in its diagnostic and prognostic potential.¹⁹⁸

MEG is a functional imaging technique that detects the magnetic signal in the grey matter produced by neuronal activity.¹⁹⁹ This technique has shown efficacy in detecting functional changes that occur in specific brain regions after mild TBI and can identify PTSD-specific influences on these changes in the same brain regions.²⁰⁰ MEG imaging could therefore be a powerful tool for identifying unique functional changes characteristic of comorbid mild TBI and PTSD. While not currently used in routine clinical practice, further research with these techniques will contribute to greater understanding of the brain's response to TBI and PTSD.

Mild TBI Only

Uncomplicated mild TBIs are characterized by the presence of diffuse injuries that cannot be detected on CT. They typically involve areas of damage scattered throughout seemingly intact brain structures. This damage often presents as widespread injury to brain cells, disruption of white matter, and changes in blood vessels, which are difficult to detect with standard imaging methods.²⁰¹ DTI and similar techniques can detect diffuse axonal injuries resulting from mild TBI.²⁰² For example, a meta-analysis of DTI studies performed on patients exposed to blast mild TBI showed persistent changes in white matter integrity in several prominent tracts throughout the brain, as well as cortical thinning.²⁰³ A separate study found that multiple brain regions can show white matter damage after mild TBI.²⁰⁴ In another study, the extent of white matter damage was also correlated with the severity of post-concussive symptoms.²⁰⁵ Changes in white matter can greatly alter the connectivity between brain regions, resulting in functional impairments.

Mild TBIs, including those sustained during deployment, can cause changes to the function and structure of the hippocampus.^{206,207} Other changes in brain structure and function are thought to contribute to impairments in executive function that are commonly observed in patients with mild TBIs.^{208,209} Mild TBI can also damage the thalamus, which is correlated with worse symptoms and poor recovery.²¹⁰ The thalamus plays roles in pain, sleep, fatigue, and cognition, which may contribute to post-traumatic headache and disturbances in sleep and cognition following mild TBI.²¹¹

PTSD Only

Imaging studies have identified brain regions that are altered with PTSD. Three primary brain regions have frequently been investigated, which include the amygdala, hippocampus, and medial prefrontal cortex.

The amygdala is thought to play a role in behavioral and physiological responses to fear, and many studies have indicated that changes in its activity and structure are a hallmark of PTSD. Amygdala volume is decreased in combat veterans with PTSD, which has been linked to hyperresponsiveness and subsequent anxious arousal (a common symptom).²¹² Increased or decreased activation of the amygdala does not seem to be uniform across all PTSD patients.²¹³ Rather, increased or decreased amygdala activity may be associated with specific symptoms.²¹⁴

The hippocampus is primarily responsible for orchestrating normal learning and memory. In PTSD, increased hippocampal activity is associated with reliving symptoms and impaired episodic memory.²¹³ Structural connectivity between the left and right hippocampus may also be impacted by PTSD.²¹⁵ Structural imaging studies have shown that decreased hippocampal volume may also be associated with PTSD.²¹⁶ However, one study of veterans with PTSD reported that smaller volume in specific regions of the hippocampus at the beginning of the study was associated with fewer symptoms two years later.²¹⁶ This finding was observed even after adjusting for treatment and combat exposure. Thus, more research is needed to understand the relationship between hippocampal structure and PTSD symptoms.

The medial prefrontal cortex is responsible for processing and encoding emotional information and using that information to add context to memories. Reduced activity of the ventromedial prefrontal cortex, which is linked to the experience and regulation of emotion, is observed in PTSD.²¹⁷ This decrease in activity seems to be an acquired characteristic caused by PTSD.²¹⁸ Smaller medial prefrontal cortex volumes are also a hallmark of PTSD.²¹⁹

Comorbid Group

Many studies have aimed to examine the amygdala, hippocampus, and medial prefrontal cortex to determine if key pathological features of mild TBI and PTSD are worsened by comorbid occurrence. A study that explored the impact of PTSD on cortical structural integrity in a group of veterans showed a potential dose-response relationship in individuals with comorbid severe PTSD and deployment-related mild TBI.²²⁰ Notably, however, the study also found a stronger association between age and cortical changes than between PTSD and cortical changes. Decreased cortical thickness has been reported in individuals diagnosed with PTSD with a history of mild TBI.²²¹ In two studies of veterans, those with comorbid PTSD and TBI exhibited an increase in amygdala volume that was not apparent in the TBI-only group.^{195,222} However, other studies have shown that amygdala volume decreases with PTSD alone,²²³ which could indicate that comorbid mild TBI and PTSD may have a distinct phenotype detectable through brain imaging. To further distinguish mild TBI

and PTSD, future studies could evaluate differences in imaging metrics within brain regions associated with the cognitive capabilities assessed by neurocognitive tests to identify features unique to comorbid PTSD and TBI.

The current view of how changes in brain structure and function can uniquely underlie symptom manifestation with comorbid PTSD and TBI is that both these conditions alter the ability of networks of brain structures to communicate.²²⁴ This view is partially supported by one systematic review, which found trends suggesting that TBI-related PTSD is associated with disrupted white matter tracts, as well as changes in whole-brain networks or resting-state MEG connectivity.²²⁵ Other studies have also shown widespread changes in white matter integrity in those with mild TBI and PTSD symptoms.²²⁶ White matter integrity changes observed in mild TBI are pivotal, as they alter the connectivity between structures, resulting in a higher likelihood of developing behavioral and cognitive symptoms.²²⁷ These changes occur in white matter tracts that connect regions important for PTSD symptoms, including the corpus callosum and tracts connecting limbic system structures, such as the hippocampus and amygdala.²²⁸ In mild TBI patients, more severe PTSD symptoms are linked to greater damage in these tracts.²²⁹

There are more regions with changes in white matter integrity in those with comorbid mild TBI and PTSD than in those with PTSD or mild TBI alone.²³⁰ These findings suggest that, while PTSD is associated with overt structural differences, the white matter changes associated with mild TBI are an insidious contributor to increased PTSD symptoms. Similar overlapping patterns of reduced resting-state functional connectivity have also been reported in regions involved in working memory in those with mild TBI and PTSD.²³¹ One study examining a group of military veterans and civilians found that older participants with comorbid mild TBI and PTSD showed greater variability in functional connectivity across several brain networks than older controls, which may have contributed to hypervigilance observed in the comorbid group.²³² Furthermore, PET scans suggest altered metabolic function in brain regions involved in emotional processing in mild TBI patients with persistent and significant comorbid PTSD. PET scans indicate that changes in other brain regions involved in similar functions are associated with hyperarousal and post-concussive symptoms.²³³ Changes in brain structure and function detected with comorbid mild TBI and PTSD have also been associated with other symptoms, including sleep disturbances,^{105,234} fatigue,²³⁵ cognitive impairment,²³⁶ and autonomic nervous system symptoms.²³⁷

TREATMENT IMPLICATIONS

Clinical Practice Guidelines

Several military-relevant guidelines on the treatment of mild TBI and PTSD are available ([Table 3](#)). The *VA/DOD CPG for the Management and Rehabilitation of Post-Acute Mild TBI* focuses on symptom management, education, and evidence-based diagnosis and treatment of possible comorbid conditions.⁸ The *VA/DOD CPG for the Management of PTSD and Acute Stress Disorder* emphasizes a collaborative treatment approach, manualized trauma-focused psychotherapy, and recognition of possible comorbid conditions.¹³⁷ Prescribing

medication for patients with comorbid TBI and PTSD is challenging as some medications can exacerbate the symptoms of one condition while effectively treating the other.²³⁸ Thus, special attention is required during integrated mild TBI and PTSD care. It is also critical to consider the specific PTSD subtype and symptom presentation to develop a treatment plan that is tailored to the needs of the individual patient.²³⁹

Difficulties with patient retention can challenge effective treatment.²⁴⁰ One of the most common barriers to treatment compliance is the deficit in executive function that may exist in patients with comorbid mild TBI and PTSD.²⁴¹ Therefore, greater executive functioning at baseline has been associated with improvements in quality of life following participation in cognitive processing therapy, or CPT.²⁴² For individuals with impairments in executive functioning, calendars, worksheets, and session modifications may help promote adherence.²⁴³ In addition, problems with emotional regulation, impulse control, and symptom severity from PTSD as well as the stigma related to seeking treatment can limit the patient's ability to engage in treatment or lead to dropping out.²⁴⁴ These cognitive and psychological barriers can result in poor treatment outcomes. Therefore, the efficacy of PTSD and mild TBI treatments should also be evaluated with consideration given to the likelihood of compliance with treatment recommendations.

Both nonpharmacological and pharmacological approaches can be useful for treating PTSD and TBI. In one systematic review of 26 studies on treatments for comorbid mild TBI and PTSD, CPT and other kinds of cognitive behavioral therapy reduced PTSD symptoms in patients when combined with other treatments.²⁴⁵ Pharmacological agents showed some promise in treating chronic PTSD. Novel treatments like vestibular rehabilitation and eye movement desensitization and reprocessing or EMDR are promising for comorbid TBI and PTSD but require further study.²⁴⁶ The efficacy of many of these treatments has not been adequately evaluated with comorbid PTSD and mild TBI, and most studies focus on one of the two conditions. Given the unique circumstances resulting from comorbid occurrence, these approaches may not adequately address the overall symptom burden.

Nonpharmacological Interventions

One systematic review on psychotherapy for military-related PTSD found that the treatments supported by the most evidence were CPT, trauma-focused exposure therapies, and EMDR.²⁴⁷ While other PTSD treatments are well-supported by evidence, fewer studies have been performed with comorbid PTSD and mild TBI patients. Studies of prolonged exposure or PE therapy,¹⁶⁴ CPT,²⁴⁸ and mindfulness intervention²⁴⁹ have had positive results. Several studies show that cognitive rehabilitation interventions can reduce psychiatric symptoms.²⁵⁰ Combined strategies for administering therapies to better address comorbid TBI and PTSD are currently being explored. One such therapy is the SMART-CPT approach, which integrates the compensatory cognitive training aspects of Cognitive Symptom Management and Rehabilitation Therapy with CPT. A randomized, controlled trial found that while both CPT and SMART-CPT produced nearly equivalent reductions in PTSD and post-concussive symptoms, SMART-CPT was better able to improve learning and memory, attention, and problem solving.²⁵¹ Additionally, SMART-CPT resulted in improvements in life satisfaction,

family and health outcomes, and daily activities similar to those resulting from CPT. SMART-CPT can also be administered in less time than both treatments separately.²⁵¹

Another strategy involves intensive care programs that utilize an interdisciplinary approach to treat PTSD symptoms in service members with TBI. Qualitative analyses revealed that service members and veterans with chronic TBI prefer multidisciplinary care models that integrate mental health treatment; thus, using these models may reduce stigma that can be associated with PTSD or mental health care.²⁵² One example is a two-week intervention known as the Home Base Intensive Clinical Program. Home Base is a national nonprofit organization that provides mental health services to military service members, veterans, and their families. The ICP utilizes what is known as a massed care approach, combining PE, CPT, or cognitive rehabilitation for trauma-focused treatment. Individuals complete both core programming and individualized therapy.²⁵³ At discharge from the program, service members and veterans with TBI reported decreased PTSD and post-concussive symptoms in one study.²⁵³

Similar programs for service members with comorbid TBI and PTSD are available through the National Intrepid Center of Excellence and Intrepid Spirit Center.^{254,255} The four-week NICoE intensive outpatient program has been shown to significantly reduce neuropsychological and behavioral symptoms in service members with mild TBI history and comorbid mental health conditions, including PTSD symptoms. One study that evaluated the effectiveness of the four-week NICoE intensive outpatient program measured symptoms at program discharge in 1,271 participants, though approximately less than 15% of participants responded to follow-up inquiries at 1-, 2-, and 3-months post-treatment.²⁵⁶ While these programs aim to be comprehensive, they are time-intensive, lack standardized administration, have not been evaluated against a control intervention, and have a limited amount of data on long-term outcomes. These gaps highlight opportunities for future research to improve treatment programs.

A form of cognitive behavioral therapy known as stress inoculation training, or SIT, has also shown efficacy in treating comorbid mild TBI and PTSD symptoms. A study that implemented SIT in a group of veterans with comorbid mild TBI and PTSD found that it effectively reduced PTSD symptoms and improved self-reported concentration and engagement in valued or functional activities in daily life.²⁵⁷ SIT is recommended not as a replacement for primary treatments, but to support and enhance CPT and PE therapy.²⁵⁷ Improvement in cognition and emotional disturbance has also been seen in the goal-oriented attentional self-regulation, or GOALS, cognitive rehabilitation training program.²⁵⁸ One randomized controlled trial in veterans compared GOALS training to brain-health education training. Participants who completed GOALS showed a decrease in PTSD symptoms and significant improvements in attention, executive functioning, mood disturbances, and complex functional task performance.²⁵⁸ The primary target of GOALS training is to focus on improving self-regulation and cognitive control to achieve personalized goals. Thus, applying the skills learned in this training can have a considerable positive impact on quality of life.²⁵⁸

Repetitive transcranial magnetic stimulation, a non-invasive brain stimulation technique, is also being explored as a potential treatment for comorbid mild TBI and PTSD.²⁵⁹ Some have

proposed rTMS may promote cognitive restoration after TBI, particularly when used in combination with behavioral interventions.²⁶⁰ A review of all rTMS studies completed between 2002 and 2018 showed that, when combined with psychotherapy, high-frequency rTMS over the dorsolateral prefrontal cortex or other frontal regions effectively alleviated depressive symptoms associated with PTSD or core PTSD symptoms, respectively.²⁶¹ However, optimal dosing and session protocols remain unclear.²⁶¹ In one study, when rTMS was applied at low frequency to the dorsolateral prefrontal cortex, it alleviated hyperarousal resulting from comorbid anxiety. Subsequent studies have shown it can alleviate symptoms in service members and veterans with comorbid TBI and PTSD.²⁶² These studies have also observed benefits by targeting regions that may be more directly involved in PTSD symptoms, including the amygdala.²⁶³

As other studies report wide variability in responses to rTMS,²⁶⁴ some researchers have proposed using personalized rTMS strategies to improve efficacy. These include alpha-guided rTMS, or α -rTMS, and rTMS guided by neuroimaging. For example, α -rTMS involves tailoring the frequency of the treatment to that of an individual's alpha band, which is a frequency of brain activity observed on EEG that supports cognitive processes like working memory.²⁶⁵ One 2025 preliminary study showed that α -rTMS significantly decreased both self-reported TBI and PTSD symptoms in a cohort of 33 special operations forces personnel.²⁶⁶ Another study also showed a significant reduction in PTSD and depression symptoms in a group of 18 SOF personnel with TBI history.²⁶⁷ Additionally, some have observed that certain neuroimaging features can predict response to rTMS and can be used to tailor treatment.²⁵⁹ However, studies on these approaches often lack control groups, making it difficult to come to definite conclusions on efficacy.

Researchers have also examined the efficacy of a variety of other nonpharmacological interventions, including music therapy,²⁶⁸ yoga,²⁶⁹ and others, for managing symptoms associated with PTSD. While these studies have shown benefits, these studies have methodological concerns, such as small sample sizes and lack of control conditions for comparison. Thus, current evidence is insufficient to determine whether these benefits would generalize to the broader population of service members with PTSD or comorbid PTSD and TBI. More testing is required to determine whether various nonpharmacological interventions will be efficacious treatment options leading to lasting clinically relevant outcomes.

Pharmacological Interventions

Though psychotherapy is the first-line treatment for PTSD, a study of 207,354 adults with TBI observed low psychotherapy participation, and psychotropic medication was more commonly used for individuals diagnosed with anxiety or PTSD post-TBI.²⁷⁰ Antidepressants have been widely studied as a potential treatment for PTSD. SSRIs and SNRIs, such as sertraline and venlafaxine, respectively, are the first line of prescribed medications for PTSD. They have been shown to effectively reduce symptoms in multiple clinical trials.²⁷¹ Tricyclic antidepressants and MAOIs have also been tested for alleviating PTSD symptoms and have

shown some efficacy, although adverse effects make these medications less desirable candidates for therapeutic interventions.²⁷²

Beta blockers such as prazosin have yielded both negative and positive results in clinical trials. While some studies have shown that prazosin can effectively reduce post-traumatic nightmares, avoidance, and hypervigilance, others have found no difference between prazosin and placebo-treated groups in symptom severity.²⁷³ Propranolol is also a potential treatment for PTSD symptoms, but the data generally do not support its efficacy as a stand-alone treatment.²⁷⁴ One randomized controlled trial found that mifepristone also did not significantly reduce symptoms relative to placebo.²⁷⁵ A different randomized control trial suggested methylphenidate (a central nervous system stimulant) can reduce PTSD, depression, cognitive, and post-concussive symptoms in a mixed military and civilian population with mild TBI, PTSD, or both,²⁷⁶ but larger randomized control trials at multiple sites are needed to confirm these findings. Other classes of drugs, such as anticonvulsants or mood stabilizers, antipsychotics, benzodiazepines, and psychedelics have also been considered as potential therapies. However, these drugs have either not been effectively evaluated in large randomized clinical trials, or have shown serious adverse effects, minimal efficacy, or both, making them undesirable candidates for the treatment of comorbid mild TBI and PTSD.²⁷²

Factors Protective Against PTSD Symptoms

One study of factors that are protective against self-harm found patients who reported having personal protective factors (such as social competency and positive temperament), social protective factors (such as social support in the form of family, colleagues, and community connection),²⁷⁷ and other factors (including pets and hobbies) were less likely to be diagnosed with PTSD.²⁷⁸ A study of veterans showed that higher dispositional optimism and higher levels of community integration also protected against PTSD.²⁷⁹ Resilience is another important factor associated with outcomes after TBI and reduced PTSD symptoms after injury.^{238,280} As mentioned above, longer durations of post-traumatic amnesia are associated with a reduction in the development of PTSD.¹⁸⁹ This finding explains why those with moderate or severe TBI associated with prolonged loss of consciousness are less likely to develop PTSD than those with mild TBI.

CONCLUSION

Substantial evidence demonstrates that comorbid TBI and PTSD can considerably impact the function and psychological well-being of service members and veterans. Military providers treating service members and veterans with PTSD and comorbid mild TBI are often faced with complex decision-making as these patients present with more severe or persistent symptoms that are resistant to treatment than individuals diagnosed with only one of these conditions. Research shows that standard PTSD treatments can help with the main PTSD symptoms. However, treatments that address the challenges of both conditions together are needed. Promising research with imaging, blood, and other fluid biomarkers is ongoing and has potential to guide management and clinical decision-making in the future.

Further research is needed to identify more effective diagnostic and assessment tools, treatment options, and prognostic tools to benefit patients with PTSD who have a history of mild TBI.

TABLES

Table 1: Mild TBI Clinical Tools

Tool	Assessment Type	Domain Assessed	VA/DOD Specific (Y/N)
Veterans' Health Administration TBI Clinical Reminder	Screening	Symptoms	Y
Automated Neuropsychological Assessment Metric 4 TBI-MIL	NCAT	Cognitive function	Y
Cognigram	NCAT	Cognitive function	N
Immediate Post-Concussion Assessment	NCAT	Cognitive function	N
Canadian CT Head Rule	Screening	Multiple domains	N
Military Acute Concussion Evaluation 2	Screening	Multiple domains	Y
New Orleans Criteria	Screening	Multiple domains	N
Neurobehavioral Symptom Inventory	Self-report	Symptoms	N

Table 2: PTSD Clinical Tools

Tool	Assessment Type	Domain Assessed	VA/DOD Specific (Y/N)
Minnesota Multiphasic Personality Inventory	Self-report	Personality	N
Post-Deployment Health Assessment	Assessment	Self-reported symptoms	Y
Post-Deployment Health Reassessment	Assessment	Self-reported symptoms	Y
Clinician-Administered PTSD Scale	Assessment	Symptoms	N
Deployed Mental Health Assessment	Assessment	Symptoms	Y
Primary Care PTSD Screen	Screening	Symptoms	N
PTSD Checklist – Military Version	Self-report	Symptoms	Y
PTSD Checklist – Civilian Version	Self-report	Symptoms	N
Rivermead Post-Concussion Symptoms Questionnaire	Self-report	Symptoms	N

Table 3: Military Relevant Clinical Recommendations/Clinical Practice Guidelines

CR/CPG	Website Address	Last Revised
Military Acute Concussion Evaluation 2	health.mil/MACE2	2021
VA/DOD Clinical Practice Guideline for the Management of Concussion-Mild Traumatic Brain Injury	healthquality.va.gov/guidelines/rehab/mtbi/index.asp	2021
VA/DoD Clinical Practice Guideline for Posttraumatic Stress Disorder	healthquality.va.gov/guidelines/MH/ptsd/	2023
Traumatic Brain Injury Center of Excellence Clinical Recommendation on Neuroimaging Following Concussion/Mild Traumatic Brain Injury: Guidance for the Primary Care Manager	health.mil/Neuroimaging-mTBI-CR	2024

REFERENCES

1. Peterson AB, Kegler SR. Deaths from fall-related traumatic brain injury—United States, 2008-2017. Centers for Disease Control and Prevention. Updated 2020. Available from: https://www.cdc.gov/mmwr/volumes/69/wr/mm6909a2.htm?s_cid=mm6909a2_w
2. Centers for Disease Control and Prevention. Report to Congress on traumatic brain injury in the United States: Epidemiology and rehabilitation. Updated 2014. Available from: https://www.cdc.gov/traumaticbraininjury/pdf/tbi_report_to_congress_epi_and_rehab-a.pdf
3. Traumatic Brain Injury Center of Excellence. DOD TBI worldwide numbers. Updated 2025. Available from: <https://health.mil/Military-Health-Topics/Centers-of-Excellence/Traumatic-Brain-Injury-Center-of-Excellence/DOD-TBI-Worldwide-Numbers>
4. Lindberg MA, Moy Martin EM, Marion DW. Military traumatic brain injury: The history, impact, and future. *J Neurotrauma*. 2022;39(17-18):1133-1145. doi:10.1089/neu.2022.0103
5. Lindquist LK, Love HC, Elbogen EB. Traumatic brain injury in Iraq and Afghanistan veterans: New results from a national random sample study. *J Neuropsychiatry Clin Neurosci*. 2017;29(3):254-259. doi:10.1176/appi.neuropsych.16050100
6. Van Pelt KL, Allred D, Cameron KL, et al. A cohort study to identify and evaluate concussion risk factors across multiple injury settings: Findings from the CARE Consortium. *Inj Epidemiol*. 2019;6(1):1-11. doi:10.1186/s40621-018-0178-3
7. Greco T, Ferguson L, Giza C, Prins M. Mechanisms underlying vulnerabilities after repeat mild traumatic brain injuries. *Exp Neurol*. 2019;317:206-213. doi:10.1016/j.expneurol.2019.01.012
8. United States Department of Veterans Affairs, Department of Defense. Clinical practice guideline for the management and rehabilitation of post-acute of mild traumatic brain injury. Updated 2021. Available from: <https://www.healthquality.va.gov/guidelines/Rehab/mild TBI/index.asp>
9. Department of Defense. Department of Defense Instruction 6490.11: DOD policy guidance for management of traumatic injury/concussion in the deployed setting. Updated 2021. Available from: <https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/649011p.pdf>
10. Karr JE, Iverson GL, Berghem K, Koutilainen A-K, Terry DP, Luoto TM. Complicated mild traumatic brain injury in older adults: Post-concussion symptoms and functional outcome at one week post injury. *Brain Inj*. 2020;34(1):26-33. doi:10.1080/02699052.2019.1669825
11. Traumatic Brain Injury Center of Excellence. Military Acute Concussion Evaluation 2 (MACE 2). Updated 2021. Available from: <https://health.mil/Reference-Center/Publications/2020/07/30/Military-Acute-Concussion-Evaluation-MACE-2>

12. Sharp AL, Huang BZ, Tang T, et al. Implementation of the Canadian CT Head Rule and its association with use of computed tomography among patients with head injury. *Ann Emerg Med.* 2018;71(1):54-63.e2. doi:10.1016/j.annemergmed.2017.06.022
13. Yarlagadda J, Joshi S, Cerasale MT, Rana S, Heidemann D. The applicability of New Orleans Criteria for head computed tomography in inpatient falls with injury. *Neurohospitalist.* 2019;9(4):197-202. doi:10.1177/1941874419832441
14. Traumatic Brain Injury Center of Excellence. Neuroimaging following concussion/mild traumatic brain injury: Guidance for the primary care manager. Updated 2024. Available from: <https://www.health.mil/Reference-Center/Publications/2024/02/20/Neuroimaging-Following-Mild-TBI-in-the-NonDeployed-Setting-Clinical-Recommendation>
15. Manley GT, Dams-O'Connor K, Alosco ML, et al. A new characterisation of acute traumatic brain injury: The NIH-NINDS TBI Classification and Nomenclature Initiative. *Lancet Neurol.* 2025;24(6):512-523. doi:10.1016/s1474-4422(25)00154-1
16. Manley GT, Dams-O'Connor K, Awwad HO, et al. Marking a new age in characterization of acute traumatic brain injury: The National Institute of Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative. *J Neurotrauma.* 2025;42(13-14):1021-1022. doi:10.1089/neu.2025.0134
17. Menon DK, Silverberg ND, Ferguson AR, et al. Clinical assessment on days 1–14 for the characterization of traumatic brain injury: Recommendations from the 2024 NINDS Traumatic Brain Injury Classification and Nomenclature Initiative Clinical/Symptoms Working Group. *J Neurotrauma.* 2025;42(13-14):1038-1055. doi:10.1089/neu.2024.0577
18. Bazarian JJ, Zetterberg H, Buki A, et al. Blood-based biomarkers for improved characterization of traumatic brain injury: Recommendations from the 2024 National Institute for Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Blood-Based Biomarkers Working Group. *J Neurotrauma.* 2025;42(13-14):1065-1085. doi:10.1089/neu.2024.0581
19. Mac Donald CL, Yuh EL, Vande Vyvere T, et al. Neuroimaging characterization of acute traumatic brain injury with focus on frontline clinicians: Recommendations from the 2024 National Institute of Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Imaging Working Group. *J Neurotrauma.* 2025;42(13-14):1056-1064. doi:10.1089/neu.2025.0079
20. Nelson LD, Wilson L, Albrecht JS, et al. Toward more holistic early traumatic brain injury evaluation and care: Recommendations from the 2024 National Institute of Neurological Disorders and Stroke Traumatic Brain Injury Classification and Nomenclature Initiative Psychosocial and Environmental Modifiers Working Group. *J Neurotrauma.* 2025;42(13-14):1023-1037. doi:10.1089/neu.2024.0569
21. Polinder S, Cnossen MC, Real RGL, et al. A multidimensional approach to post-concussion symptoms in mild traumatic brain injury. *Front Neurol.* 2018;9:1113. doi:10.3389/fneur.2018.01113

22. Rao V, Syeda A, Roy D, Peters ME, Vaishnavi S. Neuropsychiatric aspects of concussion: Acute and chronic sequelae. *Concussion*. 2017;2(1):CNC29. doi:10.2217/cnc-2016-0018
23. Englert RM, Belding JN, Thomsen CJ. Self-reported symptoms in U.S. Marines following blast- and impact-related concussion. *Mil Med*. 2023;188(7-8):e2118-e2125. doi:10.1093/milmed/usad026
24. Yehuda R, Hoge CW, McFarlane AC, et al. Post-traumatic stress disorder. *Nat Rev Dis Primers*. 2015;1:15057. doi:10.1038/nrdp.2015.57
25. National Institute of Mental Health. Post-traumatic stress disorder (PTSD). Updated 2023. Available from: https://www.nimh.nih.gov/health/statistics/post-traumatic-stress-disorder-ptsd#part_2609
26. Meadows SO, Engel CC, Collins RL, et al. 2015 Department of Defense Health Related Behaviors Survey (HRBS). *Rand Health Q*. 2018;8(2).
27. Stefanovics EA, Potenza MN, Pietrzak RH. PTSD and obesity in U.S. military veterans: Prevalence, health burden, and suicidality. *Psychiatry Res*. 2020;291:113242. doi:10.1016/j.psychres.2020.113242
28. Barr N, Davis JP, Duguiseppe G, Keeling M, Castro C. Direct and indirect effects of mindfulness, PTSD, and depression on self-stigma of mental illness in OEF/OIF veterans. *Psychol Trauma*. 2022;14(6):1026-1034. doi:10.1037/tra0000535
29. Psychiatry Online. Trauma and stressor related disorders. Updated 2022. Available from: https://www.psychiatryonline.org/doi/full/10.1176/appi.books.9780890425787.x07_Trauma_and_Stressor_Related_Disorders
30. American Psychiatric Association. What is posttraumatic stress disorder? Updated 2025. Available from: <https://www.psychiatry.org/patients-families/ptsd/what-is-ptsd>
31. World Health Organization. ICD-11 for mortality and morbidity statistics. Updated 2025. Available from: <https://icd.who.int/browse11/l-m/en#http%3a%2f%2fid.who.int%2fid%2fentity%2f585833559>
32. United States Department of Veterans Affairs. Complex PTSD: History and definitions. Updated 2025. Available from: https://www.ptsd.va.gov/professional/treat/essentials/complex_ptsd.asp
33. Gilbar O. Examining the boundaries between ICD-11 PTSD/CPTSD and depression and anxiety symptoms: A network analysis perspective. *J Affect Disord*. 2020;262:429-439. doi:10.1016/j.jad.2019.11.060
34. Wolf EJ, Miller MW, Kilpatrick D, et al. ICD-11 Complex PTSD in US national and veteran samples: Prevalence and structural associations with PTSD. *Clin Psychol Sci*. 2015;3(2):215-229. doi:10.1177/2167702614545480
35. Grinsill R, Kolandaivasamy M, Kerr K, Varker T, Khoo A. Prevalence of complex post-traumatic stress disorder in serving military and veteran populations: A systematic

review. *Trauma Violence Abuse.* 2024;25(4):3377-3387.
doi:10.1177/15248380241246996

36. Hai T, Agimi Y, Stout K. Prevalence of comorbidities in active and reserve service members pre and post traumatic brain injury, 2017-2019. *Mil Med.* 2023;188(1-2):e270-e277. doi:10.1093/milmed/usab342
37. Sudhakar SK, Sridhar S, Char S, Pandya K, Mehta K. Prevalence of comorbidities post mild traumatic brain injuries: A Traumatic Brain Injury Model Systems study. *Front Hum Neurosci.* 2023;17:1158483. doi:10.3389/fnhum.2023.1158483
38. Brenner LA, Forster JE, Gradus JL, et al. Associations of military-related traumatic brain injury with new-onset mental health conditions and suicide risk. *JAMA Netw Open.* 2023;6(7):e2326296. doi:10.1001/jamanetworkopen.2023.26296
39. Brassil HE, Salvatore AP. The frequency of post-traumatic stress disorder symptoms in athletes with and without sports related concussion. *Clin Transl Med.* 2018;7(1):25. doi:10.1186/s40169-018-0200-y
40. Karr JE, Rippey CS, Hubert TJ, Stein MB, Adams TG, Pietrzak RH. Traumatic brain injury in US veterans: Prevalence and associations with physical, mental, and cognitive health. *Arch Phys Med Rehabil.* 2024;106(4):537-547. doi:10.1016/j.apmr.2024.11.010
41. Albrecht JS, Gardner RC, Bahorik AL, Xia F, Yaffe K. Psychiatric disorders are common among older US veterans prior to traumatic brain injury. *J Head Trauma Rehabil.* 2024;39(6):E525-E531. doi:10.1097/htr.0000000000000959
42. Agtarap S, Hungerford LD, Ettenhofer ML. Identifying unique symptom groups following mild traumatic brain injury using the neurobehavioral symptom inventory and PTSD Checklist-5 in military personnel: A bifactor analysis. *J Head Trauma Rehabil.* 2023;38(6):E371-E383. doi:10.1097/htr.0000000000000854
43. Dieter JN, Engel SD. Traumatic brain injury and posttraumatic stress disorder: Comorbid consequences of war. *Neurosci Insights.* 2019;14:1179069519892933. doi:10.1177/1179069519892933
44. Lange RT, French LM, Lippa SM, Bailie JM, Brickell TA. Posttraumatic stress disorder is a stronger predictor of long-term neurobehavioral outcomes than traumatic brain injury severity. *J Trauma Stress.* 2020;33(3):318-329. doi:10.1002/jts.22480
45. Garcia K, Moore B, Kim G, Dsurney J, Chan L. The impact of affective states on postconcussive symptoms in a TBI population. *Mil Med.* 2019;184(Supplement_1):168-173. doi:10.1093/milmed/usy333
46. Kinney AR, Adams RS, Caban JJ, DeGraba TJ, Pickett T, Hoover P. Intensive outpatient program response among service members with mild traumatic brain injury: Change between distinct post-concussive symptom subgroups. *Arch Phys Med Rehabil.* 2023;104(6):892-901. doi:10.1016/j.apmr.2022.12.191
47. Hardy M, Kennedy J, Reid M, Cooper D. Differences in posttraumatic stress disorder, depression, and attribution of symptoms in service members with combat versus

noncombat mild traumatic brain injury. *J Head Trauma Rehabil.* 2020;35(1):37-45. doi:10.1097/HTR.0000000000000486

48. Simonovic M, Nedovic B, Radisavljevic M, Stojanovic N. The co-occurrence of post-traumatic stress disorder and depression in individuals with and without traumatic brain injury: A comprehensive investigation. *Medicina (Kaunas).* 2023;59(8):1467. doi:10.3390/medicina59081467

49. Iljazi A, Ashina H, Al-Khazali HM, et al. Post-traumatic stress disorder after traumatic brain injury—A systematic review and meta-analysis. *Neurol Sci.* 2020;41(10):2737-2746. doi:10.1007/s10072-020-04458-7

50. Kals M, Wilson L, Levey DF, et al. Genetic vulnerability and adverse mental health outcomes following mild traumatic brain injury: A meta-analysis of CENTER-TBI and TRACK-TBI cohorts. *EClinicalMedicine.* 2024;78:102956. doi:10.1016/j.eclinm.2024.102956

51. Lai C, Kostas-Polston EA, Engler MB, Capple KA, Froelicher ES. Prevalence of PTSD in active duty members with mild traumatic brain injury: Systematic review and meta-analysis. *Mil Med.* 2024;189(7-8):e1454-e1461. doi:10.1093/milmed/usae272

52. Bockhop F, Cunitz K, Zeldovich M, et al. Influence of sociodemographic, premorbid, and injury-related factors on post-traumatic stress, anxiety, and depression after traumatic brain injury. *J Clin Med.* 2023;12(12):3873. doi:10.3390/jcm12123873

53. Faulkner JW, Snell DL, Theadom A, de Terte I, Low R. Patterns of post-traumatic stress symptoms in mild traumatic brain injury and their relationship with outcomes: A latent profile analysis. *J Clin Exp Neuropsychol.* 2023;45(3):230-241. doi:10.1080/13803395.2023.2227401

54. Stein MB, Jain S, Giacino JT, et al. Risk of posttraumatic stress disorder and major depression in civilian patients after mild traumatic brain injury: A TRACK-TBI study. *JAMA psychiatry.* 2019;76(3):249-258. doi:10.1001/jamapsychiatry.2018.4288

55. Frank C, Zamorski MA, Lee JE, Colman I. Deployment-related trauma and post-traumatic stress disorder: Does gender matter? *Eur J Psychotraumatol.* 2018;9(1):1486123. doi:10.1080/20008198.2018.1486123

56. MacGregor AJ, Crouch DJ, Zouris JM, Dougherty AL, Dye JL, Fraser JJ. Sex differences in postinjury health profiles among U.S. military personnel following deployment-related concussion. *J Womens Health (Larchmt).* 2024;33(4):515-521. doi:10.1089/jwh.2023.0068

57. Lange RT, French LM, Lippa S, et al. Risk factors for the presence and persistence of posttraumatic stress symptoms following traumatic brain injury in U.S. service members and veterans. *J Trauma Stress.* 2023;36(1):144-156. doi:10.1002/jts.22892

58. Mikolić A, van Klaveren D, Jost M, et al. Prognostic models for depression and post-traumatic stress disorder symptoms following traumatic brain injury: A CENTER-TBI study. *BMJ Ment Health.* 2025;28(1):e301181. doi:10.1136/bmjment-2024-301181

59. Gruenbaum BF, Zlotnik A, Oleshko A, et al. The relationship between post-traumatic stress disorder due to brain injury and glutamate intake: A systematic review. *Nutrients*. 2024;16(6). doi:10.3390/nu16060901
60. Loignon A, Ouellet M-C, Belleville G. A systematic review and meta-analysis on PTSD following TBI among military/veteran and civilian populations. *J Head Trauma Rehabil*. 2020;35(1):E21-E35. doi:10.1097/HTR.0000000000000514
61. Albanese BJ, Macatee RJ, Stentz LA, Schmidt NB, Bryan CJ. Interactive effects of cumulative lifetime traumatic brain injuries and combat exposure on posttraumatic stress among deployed military personnel. *Cogn Behav Ther*. 2019;48(1):77-88. doi:10.1080/16506073.2018.1478446
62. Miles S, Klyce D, Garcia A, et al. Chronicity of posttraumatic stress disorder symptoms following traumatic brain injury: A comparison of special operators and conventional forces. *J Spec Oper Med*. 2024;24(4):74-81. doi:10.55460/vum3-fkjo
63. Kumar RG, Klyce D, Nakase-Richardson R, Pugh MJ, Walker WC, Dams-O'Connor K. Associations of military service history and health outcomes in the first five years after traumatic brain injury. *J Neurotrauma*. 2023;40(11-12):1173-1186. doi:10.1089/neu.2022.0340
64. Duarte DC, Duarte JC, Ocampo González Á A, Castillo García JF. Psychiatric disorders in post-traumatic brain injury patients: A scoping review. *Helicon*. 2023;9(1):e12905. doi:10.1016/j.heliyon.2023.e12905
65. Kim SY, Soumoff AA, Raiciulescu S, et al. Association of traumatic brain injury severity and self-reported neuropsychiatric symptoms in wounded military service members. *Neurotrauma Rep*. 2023;4(1):14-24. doi:10.1089/neur.2022.0063
66. Howlett JR, Nelson LD, Stein MB. Mental health consequences of traumatic brain injury. *Biol Psychiatry*. 2022;91(5):413-420. doi:10.1016/j.biopsych.2021.09.024
67. Martindale SL, Shura RD, Rostami R, Taber KH, Rowland JA. Research letter: Blast exposure and brain volume. *J Head Trauma Rehabil*. 2021;36(6):424-428. doi:10.1097/htr.0000000000000660
68. Ord AS, Epstein EL, Shull ER, Taber KH, Martindale SL, Rowland JA. Factors associated with recovery from posttraumatic stress disorder in combat veterans: The role of deployment mild traumatic brain injury (mTBI). *Rehabil Psychol*. 2022;67(3):356-368. doi:10.1037/rep0000400
69. Stein MB, Kessler RC, Heeringa SG, et al. Prospective longitudinal evaluation of the effect of deployment-acquired traumatic brain injury on posttraumatic stress and related disorders: Results from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS). *Am J Psychiatry*. 2015;appiajp201514121572. doi:10.1176/appi.ajp.2015.14121572
70. Smith NIJ, Hogarth L, Tonks J, Corrigan JD, Gilmour S, Williams WH. Co-occurrence of traumatic brain injury and post-traumatic stress disorder in a national sample of UK police officers: Impact on social well-being and employment outcomes. *J Head Trauma Rehabil*. 2025;40(4):247-257. doi:10.1097/htr.0000000000001041

71. Etemad LL, Yue JK, Barber J, et al. Longitudinal recovery following repetitive traumatic brain injury. *JAMA Netw Open*. 2023;6(9):e2335804. doi:10.1001/jamanetworkopen.2023.35804
72. de Souza NL, Lindsey HM, Dorman K, et al. Neuropsychological profiles of deployment-related mild traumatic brain injury: A LIMBIC-CENC study. *Neurology*. 2024;102(12):e209417. doi:10.1212/wnl.00000000000209417
73. Remigio-Baker RA, Bailie JM, Ettenhofer ML, Cordero E, Hungerford LD. The impact of lifetime traumatic brain injury (TBI) on mental health symptoms among service members in interdisciplinary tbi programs. *Mil Med*. 2023;188(Suppl 6):199-207. doi:10.1093/milmed/usad085
74. Mac Donald CL, Barber J, Patterson J, et al. Association between 5-year clinical outcome in patients with nonmedically evacuated mild blast traumatic brain injury and clinical measures collected within 7 days postinjury in combat. *JAMA Netw Open*. 2019;2(1):e186676-e186676. doi:10.1001/jamanetworkopen.2018.6676
75. Kinney AR, Gerber HR, Hostetter TA, Brenner LA, Forster JE, Stephenson RO. Morally injurious combat events as an indirect risk factor for postconcussive symptoms among veterans: The mediating role of posttraumatic stress. *Psychol Trauma*. 2022;15(1):144-152. doi:10.1037/tra0001213
76. Litz BT, Stein N, Delaney E, et al. Moral injury and moral repair in war veterans: A preliminary model and intervention strategy. *Clin Psychol Rev*. 2009;29(8):695-706. doi:10.1016/j.cpr.2009.07.003
77. Shay J. Moral injury. *Psychoanal Psychol*. 2014;31(2):182-191. doi:10.1037/a0036090
78. McDaniel JT, Redner R, Jayawardene W, et al. Moral injury is a risk factor for substance use and suicidality among US military veterans with and without traumatic brain injury. *J Relig Health*. 2023;62(6):3926-3941. doi:10.1007/s10943-023-01905-5
79. Norman SB, Nichter B, Maguen S, Na PJ, Schnurr PP, Pietrzak RH. Moral injury among U.S. combat veterans with and without PTSD and depression. *J Psychiatr Res*. 2022;154:190-197. doi:10.1016/j.jpsychires.2022.07.033
80. Martinez BS, Rowland JA, Shura RD, Magnante AT, Morey RA, Martindale SL. Influence of affective instability on suicidal ideation beyond traumatic brain injury and posttraumatic stress disorder in veterans. *J Psychiatr Res*. 2024;172:411-419. doi:10.1016/j.jpsychires.2024.02.058
81. Stromberg KM, Martindale SL, Walker WC, et al. Mild traumatic brain injury, PTSD symptom severity, and behavioral dyscontrol: A LIMBIC-CENC study. *Front Neurol*. 2023;14:1286961. doi:10.3389/fneur.2023.1286961
82. Martindale SL, Vujanovic AA, Ord AS, Cary A, Rowland JA. Distress tolerance mitigates effects of posttraumatic stress, traumatic brain injury, and blast exposure on psychiatric and health outcomes. *Rehabil Psychol*. 2023;68(4):385-395. doi:10.1037/rep0000502

83. Miles SR, Martindale SL, Flanagan JC, et al. Putting the pieces together to understand anger in combat veterans and service members: Psychological and physical contributors. *J Psychiatr Res.* 2023;159:57-65. doi:10.1016/j.jpsychires.2023.01.013
84. Samuelson KW, Newman J, Abu Amara D, et al. Predeployment neurocognitive functioning predicts postdeployment posttraumatic stress in Army personnel. *Neuropsychology.* 2020;34(3):276-287. doi:10.1037/neu0000603
85. Lange RT, Merritt VC, Brickell TA, et al. Apolipoprotein E e4 is associated with worse self-reported neurobehavioral symptoms following uncomplicated mild traumatic brain injury in U.S. military service members. *Behav Brain Res.* 2021;415:113491. doi:10.1016/j.bbr.2021.113491
86. Merritt VC, Lange RT, Lippa SM, et al. Apolipoprotein E (APOE) ε4 genotype influences memory performance following remote traumatic brain injury in U.S. military service members and veterans. *Brain Cogn.* 2021;154:105790. doi:10.1016/j.bandc.2021.105790
87. Wolf EJ, Miller MW, Zhang R, et al. No replication of Alzheimer's disease genetics as a moderator of combat exposure's association with PTSD risk in 138,592 combat veterans. *Nat Ment Health.* 2024;2:553-561. doi:10.1038/s44220-024-00225-1
88. Stein MB, Jain S, Parodi L, et al. Polygenic risk for mental disorders as predictors of posttraumatic stress disorder after mild traumatic brain injury. *Transl Psychiatry.* 2023;13(1):24. doi:10.1038/s41398-023-02313-9
89. Qi P, Huang M, Ren X, Zhai Y, Qiu C, Zhu H. Identification of potential biomarkers and therapeutic targets related to post-traumatic stress disorder due to traumatic brain injury. *Eur J Med Res.* 2024;29(1):44. doi:10.1186/s40001-024-01640-x
90. Wray NR, Lin T, Austin J, et al. From basic science to clinical application of polygenic risk scores: A primer. *JAMA Psychiatry.* 2021;78(1):101-109. doi:10.1001/jamapsychiatry.2020.3049
91. Scofield DE, Proctor SP, Kardouni JR, Hill OT, McKinnon CJ. Risk factors for mild traumatic brain injury and subsequent post-traumatic stress disorder and mental health disorders among United States Army soldiers. *J Neurotrauma.* 2017;34(23):3249-3255. doi:10.1089/neu.2017.5101
92. Müller J, Ganeshamoorthy S, Myers J. Risk factors associated with posttraumatic stress disorder in US veterans: A cohort study. *PLoS One.* 2017;12(7):e0181647. doi:10.1371/journal.pone.0181647
93. Hanks R, Ketchum JM, Peckham M, et al. Associations of chronic pain with psychosocial outcomes after traumatic brain injury: A NIDILRR and VA TBI Model Systems collaborative project. *J Head Trauma Rehabil.* 2024;39(1):18-30. doi:10.1097/HTR.0000000000000921
94. Ord AS, Lad SS, Shura RD, Rowland JA, Taber KH, Martindale SL. Pain interference and quality of life in combat veterans: Examining the roles of posttraumatic stress disorder, traumatic brain injury, and sleep quality. *Rehabil Psychol.* 2021;66(1):31-38. doi:10.1037/rep0000333

95. Pebole MM, Whitworth JW, Iverson KM, Currao A, Fortier CB. Traumatic brain injury and posttraumatic stress disorder are associated with physical health burden among post-9/11 women veterans. *J Womens Health (Larchmt)*. 2025;34(2):221-228. doi:10.1089/jwh.2024.0147
96. MacGregor AJ, Casachahua JD, Walton SR, et al. Deployment-related concussion and long-term health-related quality of life among US military personnel. *Qual Life Res*. 2023;32(7):1971-1980. doi:10.1007/s11136-023-03367-4
97. French LM, Brickell TA, Lippa SM, et al. Clinical relevance of subthreshold PTSD versus full criteria PTSD following traumatic brain injury in U.S. service members and veterans. *J Affect Disord*. 2024;358:408-415. doi:10.1016/j.jad.2024.05.015
98. MacGregor AJ, Dougherty AL, Zouris JM, Jurick SM. The association of deployment-related probable traumatic brain injury with subsequent medical readiness status. *MSMR*. 2025;32(1):2-6.
99. Moriarty H, Robinson KM, Winter L. The additional burden of PTSD on functioning and depression in veterans with traumatic brain injury. *Nurs Outlook*. 2021;69(2):167-181. doi:10.1016/j.outlook.2020.11.003
100. Hungerford L, Agtarap S, Ettenhofer M. Impact of depression and post-traumatic stress on manual and oculomotor performance in service members with a history of mild TBI. *Brain Inj*. 2023;37(8):680-688. doi:10.1080/02699052.2023.2210293
101. Elliott JE, Ligman BR, Bryant-Ekstrand MD, et al. Comorbid neurotrauma increases neurodegenerative-relevant cognitive, motor, and autonomic dysfunction in patients with rapid eye movement sleep behavior disorder: A substudy of the North American Prodromal Synucleinopathy Consortium. *Sleep*. 2024;47(6):zsae007. doi:10.1093/sleep/zsae007
102. Wickwire EM, Albrecht JS, Capaldi VF, 2nd, et al. Association between insomnia and mental health and neurocognitive outcomes following traumatic brain injury. *J Neurotrauma*. 2023;40(21-22):2376-2385. doi:10.1089/neu.2023.0009
103. Walker WC, Clark SW, Eppich K, et al. Headache among combat-exposed veterans and service members and its relation to mild traumatic brain injury history and other factors: A LIMBIC-CENC study. *Front Neurol*. 2023;14:1242871. doi:10.3389/fneur.2023.1242871
104. Rawat BPS, Reisman J, Pogoda TK, et al. Intentional self-harm among US veterans with traumatic brain injury or posttraumatic stress disorder: Retrospective cohort study from 2008 to 2017. *JMIR Public Health Surveill*. 2023;9:e42803. doi:10.2196/42803
105. Rojczyk P, Seitz-Holland J, Kaufmann E, et al. Sleep quality disturbances are associated with white matter alterations in veterans with post-traumatic stress disorder and mild traumatic brain injury. *J Clin Med*. 2023;12(5):2079. doi:10.3390/jcm12052079
106. Jotie JM, Gustafson JA, Fonda JR, Fortier CB, Milberg WP, Fortenbaugh FC. Association of mild traumatic brain injury, post-traumatic stress disorder, and other comorbidities

on photosensitivity. *Optom Vis Sci.* 2024;101(2):90-98.
doi:10.1097/oxp.0000000000002104

107. Harrison EM, Chung SY, Englert RM, Belding JN. The effect of concussion mechanism of injury on sleep problems in active duty service members following deployment. *Mil Med.* 2024;189(1-2):e141-e147. doi:10.1093/milmed/usad197

108. Akin FW, Swan AA, Kalvesmaki A, et al. Factors that impact the long-term outcome of postconcussive dizziness among post-9/11 veterans. *Am J Audiol.* 2023;32(3s):706-720. doi:10.1044/2023_aja-22-00150

109. Pietrzykowski MO, Jackson CE, Gaudet CE. Co-occurring mental and physical health conditions among older adults with and without post-traumatic stress disorder: A case control study. *J Geriatr Psychiatry Neurol.* 2025;38(3):191-200.
doi:10.1177/08919887241285558

110. Scott GD, Neilson LE, Woltjer R, Quinn JF, Lim MM. Lifelong association of disorders related to military trauma with subsequent Parkinson's disease. *Mov Disord.* 2023;38(8):1483-1492. doi:10.1002/mds.29457

111. Neilson LE, Balba NM, Elliott JE, et al. The potential role of chronic pain and the polytrauma clinical triad in predicting prodromal PD: A cross-sectional study of U.S. veterans. *Clin Park Relat Disord.* 2024;10:100253.
doi:10.1016/j.prdoa.2024.100253

112. May AC, Hendrickson RC, Pagulayan KF, Schindler AG. An observational cohort study of alcohol use and cognitive difficulties among post-9/11 veterans with and without TBI and PTSD. *Drug Alcohol Depend.* 2024;263:112419.
doi:10.1016/j.drugalcdep.2024.112419

113. Gardner RC, Barnes DE, Li Y, Boscardin J, Peltz C, Yaffe K. Medical and psychiatric risk factors for dementia in veterans with and without traumatic brain injury (TBI): A nationwide cohort study. *J Prev Alzheimers Dis.* 2023;10(2):244-250.
doi:10.14283/jpad.2023.16

114. Logue MW, Miller MW, Sherva R, et al. Alzheimer's disease and related dementias among aging veterans: Examining gene-by-environment interactions with post-traumatic stress disorder and traumatic brain injury. *Alzheimers Dement.* 2023;19(6):2549-2559. doi:10.1002/alz.12870

115. Neale ZE, Fonda JR, Miller MW, et al. Subjective cognitive concerns, APOE ε4, PTSD symptoms, and risk for dementia among older veterans. *Alzheimers Res Ther.* 2024;16(1):143. doi:10.1186/s13195-024-01512-w

116. Marcolini S, Rojczyk P, Seitz-Holland J, Koerte IK, Alosco ML, Bouix S. Posttraumatic stress and traumatic brain injury: Cognition, behavior, and neuroimaging markers in Vietnam veterans. *J Alzheimers Dis.* 2023;95(4):1427-1448. doi:10.3233/jad-221304

117. Weiner MW, Harvey D, Landau SM, et al. Traumatic brain injury and post-traumatic stress disorder are not associated with Alzheimer's disease pathology measured with biomarkers. *Alzheimers Dement.* 2023;19(3):884-895. doi:10.1002/alz.12712

118. Mueller SG. Traumatic brain injury and post-traumatic stress disorder and their influence on development and pattern of Alzheimer's disease pathology in later life. *J Alzheimers Dis.* 2024;98(4):1427-1441. doi:10.3233/jad-231183
119. van der Vleugel M, Polinder S, Mikolic A, et al. The association of post-concussion and post-traumatic stress disorder symptoms with health-related quality of life, health care use and return-to-work after mild traumatic brain injury. *J Clin Med.* 2021;10(11):2473. doi:10.3390/jcm10112473
120. Rojczyk P, Heller C, Seitz-Holland J, et al. Intimate partner violence perpetration among veterans: Associations with neuropsychiatric symptoms and limbic microstructure. *Front Neurol.* 2024;15:1360424. doi:10.3389/fneur.2024.1360424
121. Brickell TA, Ivins BJ, Wright MM, Sullivan JK, French LM, Lange RT. A dyad approach to understanding relationship satisfaction and health outcomes in military couples following service member and veteran traumatic brain injury. *Front Psychiatry.* 2025;16:1465801. doi:10.3389/fpsyg.2025.1465801
122. Brickell TA, French LM, Gartner RL, et al. Factors related to perceived burden among caregivers of service members/veterans following TBI. *Rehabil Psychol.* 2019;64(3):307-319. doi:10.1037/rep0000272
123. Brickell TA, French LM, Varbedian NV, et al. Relationship satisfaction among spouse caregivers of service members and veterans with comorbid mild traumatic brain injury and post-traumatic stress disorder. *Family Process.* 2022;61(4):1525-1540. doi:10.1111/famp.12731
124. Klyce DW, Merced K, Erickson A, et al. Perceived care partner burden at 1-year post-injury and associations with emotional awareness, functioning, and empathy after TBI: A TBI Model Systems study. *NeuroRehabilitation.* 2023;52(1):59-69. doi:10.3233/nre-220128
125. Brickell TA, French LM, Wright MM, Lange RT. Aggression in military members with mild traumatic brain injury and post-traumatic stress disorder is associated with intimate partner health-related quality of life. *Womens Health Issues.* 2022;32(5):526-533. doi:10.1016/j.whi.2022.04.003
126. Brickell TA, Ivins BJ, Wright MM, et al. A dyad approach to understanding intimate partner and family distress as risk factors for poor warfighter brain health following mild traumatic brain injury in military couples. *J Head Trauma Rehabil.* 2025;online ahead of print. doi:10.1097/htr.0000000000001060
127. Porter KE, Stein MB, Martis B, et al. Postconcussive symptoms (PCS) following combat-related traumatic brain injury (TBI) in veterans with posttraumatic stress disorder (PTSD): Influence of TBI, PTSD, and depression on symptoms measured by the Neurobehavioral Symptom Inventory (NSI). *J Psychiatr Res.* 2018;102:8-13. doi:10.1016/j.jpsychires.2018.03.004
128. Bahraini NH, Hostetter TA, Forster JE, Schneider AL, Brenner LA. A Rasch analysis of the Neurobehavioral Symptom Inventory in a national cohort of Operation Enduring and

Iraqi Freedom veterans with mild traumatic brain injury. *Psychol Assess.* 2018;30(8):1013. doi:10.1037/pas0000555

129. Scimeca LM, Cothran T, Larson JE, Held P. Factor analysis of the neurobehavioral symptom inventory in veterans with PTSD and no history of mild TBI. *Appl Neuropsychol Adult.* 2024;31(2):173-180. doi:10.1080/23279095.2021.2007386

130. Llop JZ, Hoover PJ, Nix CA, Lu LH, Bowles AO, Caban JJ. NSI and PCL-5 normative tables for active duty service members affected by traumatic brain injury. *Mil Med.* 2022;188(9-10):3127-3133. doi:10.1093/milmed/usac189

131. Caplan B, Bogner J, Brenner L, et al. Utility of the neurobehavioral symptom inventory as an outcome measure: A VA TBI Model Systems study. *J Head Trauma Rehabil.* 2017;32(1):46-54. doi:10.1097/HTR.0000000000000208

132. Andrews RJ, Fonda JR, Levin LK, McGlinchey RE, Milberg WP. Comprehensive analysis of the predictors of neurobehavioral symptom reporting in veterans. *Neurology.* 2018;91(8):e732-e745. doi:10.1212/WNL.0000000000006034

133. Weathers FW, Bovin MJ, Lee DJ, et al. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. *Psychol Assess.* 2018;30(3):383-395. doi:10.1037/pas0000486

134. Franklin CL, Raines AM, Cuccurullo L-AJ, et al. 27 ways to meet PTSD: Using the PTSD-checklist for DSM-5 to examine PTSD core criteria. *Psychiatry Res.* 2018;261:504-507. doi:10.1016/j.psychres.2018.01.021

135. Moshier SJ, Lee DJ, Bovin MJ, et al. An empirical crosswalk for the PTSD Checklist: Translating DSM-IV to DSM-5 using a veteran sample. *J Trauma Stress.* 2019;32(5):799-805. doi:10.1002/jts.22438

136. Wyant HN, Silva MA, Agtarap S, et al. Applying the PTSD Checklist-Civilian and PTSD Checklist for DSM-5 crosswalk in a traumatic brain injury sample: A Veterans Affairs Traumatic Brain Injury Model Systems study. *Psychol Assess.* 2024;36(6-7):425-432. doi:10.1037/pas0001315

137. United States Department of Veterans Affairs, Department of Defense. Clinical practice guideline for the management of posttraumatic stress disorder and acute stress disorder. Updated 2023. Available from: <https://www.healthquality.va.gov/guidelines/MH/ptsd/>

138. Prins A, Bovin MJ, Smolenski DJ, et al. The primary care PTSD screen for DSM-5 (PC-PTSD-5): development and evaluation within a veteran primary care sample. *J Gen Intern Med.* 2016;31(10):1206-1211. doi:10.1007/s11606-016-3703-5

139. Bovin MJ, Kimerling R, Weathers FW, et al. Diagnostic accuracy and acceptability of the Primary Care Posttraumatic Stress Disorder Screen for the Diagnostic and Statistical Manual of Mental Disorders (Fifth Edition) among US veterans. *JAMA Netw Open.* 2021;4(2):e2036733. doi:10.1001/jamanetworkopen.2020.36733

140. Gitaari M, Mikolic A, Panenka WJ, Silverberg ND. Diagnostic accuracy of mental health screening tools after mild traumatic brain injury. *JAMA Netw Open*. 2024;7(7):e2424076. doi:10.1001/jamanetworkopen.2024.24076
141. Jurick S, Crocker L, Keller A, et al. The Minnesota Multiphasic Personality Inventory-2-RF in treatment-seeking veterans with history of mild traumatic brain injury. *Arch Clin Neuropsychol*. 2019;34(3):366-380. doi:10.1093/arclin/acy048
142. Dretsch MN, Williams K, Staver T, et al. Evaluating the clinical utility of the Validity-10 for detecting amplified symptom reporting for patients with mild traumatic brain injury and comorbid psychological health conditions. *Appl Neuropsychol Adult*. 2017;24(4):376-380. doi:10.1080/23279095.2016.1220947
143. Swan AA, Kennedy E, Cooper DB, et al. Comorbidity and polypharmacy impact neurobehavioral symptoms and symptom validity failure among post-9/11 veterans with mild traumatic brain injury. *Front Neurol*. 2023;14:1228377. doi:10.3389/fneur.2023.1228377
144. Vanderploeg RD, Belanger HG. Stability and validity of the Veterans Health Administration's Traumatic Brain Injury Clinical Reminder screen. *J Head Trauma Rehabil*. 2015;30(5):E29-E39. doi:10.1097/HTR.0000000000000095
145. Kontos AP, Van Cott AC, Roberts J, et al. Clinical and magnetic resonance spectroscopic imaging findings in veterans with blast mild traumatic brain injury and post-traumatic stress disorder. *Mil Med*. 2017;182(S1):99-104. doi:10.7205/milmed-d-16-00177
146. Eagle SR, Svirsky SE, Puccio AM, et al. Predictive blood biomarkers of targeted intervention for chronic mental health symptoms following traumatic brain injury. *J Neurotrauma*. 2025;42(5-6):e454-e460. doi:10.1089/neu.2024.0245
147. Beard K, Gauff AK, Pennington AM, Marion DW, Smith J, Sloley S. Biofluid, imaging, physiological, and functional biomarkers of mild traumatic brain injury and subconcussive head impacts. *J Neurotrauma*. 2024;online ahead of print. doi:10.1089/neu.2024.0136
148. Lange RT, Lippa S, Brickell TA, Gill J, French LM. Serum Tau, Neurofilament light chain, glial fibrillary acidic protein, and ubiquitin carboxyl-terminal hydrolase L1 are associated with the chronic deterioration of neurobehavioral symptoms after traumatic brain injury. *J Neurotrauma*. 2023;40(5-6):482-492. doi:10.1089/neu.2022.0249
149. Whitehouse DP, Wilson L, Czeiter E, et al. Association of blood-based biomarkers and 6-month patient-reported outcomes in patients with mild TBI: A CENTER-TBI analysis. *Neurology*. 2025;104(1):e210040. doi:10.1212/wnl.0000000000210040
150. Cowansage K, Nair R, Lara-Ruiz JM, et al. Genetic and peripheral biomarkers of comorbid posttraumatic stress disorder and traumatic brain injury: A systematic review. *Front Neurol*. 2025;16:1500667. doi:10.3389/fneur.2025.1500667
151. Xu M, Lin Z, Siegel CE, et al. Screening for PTSD and TBI in veterans using routine clinical laboratory blood tests. *Transl Psychiatry*. 2023;13(1):64. doi:10.1038/s41398-022-02298-x

152. Nkiliza A, Huguenard CJC, Aldrich GJ, et al. Levels of arachidonic acid-derived oxylipins and anandamide are elevated among military APOE ε4 carriers with a history of mild traumatic brain injury and post-traumatic stress disorder symptoms. *Neurotrauma Rep.* 2023;4(1):643-654. doi:10.1089/neur.2023.0045
153. Zhu Z, Huang X, Du M, et al. Recent advances in the role of miRNAs in post-traumatic stress disorder and traumatic brain injury. *Mol Psychiatry.* 2023;28(7):2630-2644. doi:10.1038/s41380-023-02126-8
154. Quatieri TF, Wang J, Williamson JR, et al. An emotion-driven vocal biomarker-based PTSD screening tool. *IEEE Open J Eng Med Biol.* 2024;5:621-626. doi:10.1109/ojemb.2023.3284798
155. Franke LM, Walker WC, Hoke KW, Wares JR. Distinction in EEG slow oscillations between chronic mild traumatic brain injury and PTSD. *Int J Psychophysiol.* 2016;106:21-9. doi:10.1016/j.ijpsycho.2016.05.010
156. Zhang J, Emami Z, Safar K, et al. Teasing apart trauma: Neural oscillations differentiate individual cases of mild traumatic brain injury from post-traumatic stress disorder even when symptoms overlap. *Transl Psychiatry.* 2021;11(1):345. doi:10.1038/s41398-021-01467-8
157. Arrieux JP, Cole WR, Ahrens AP. A review of the validity of computerized neurocognitive assessment tools in mild traumatic brain injury assessment. *Concussion.* 2017;2(1):CNC31. doi: 10.2217/cnc-2016-0021
158. United States Food and Drug Administration. ANAM Test System 510(k) summary. Updated 2021. Available from: https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201376.pdf.
159. Iverson GL, Ivins BJ, Karr JE, et al. Comparing composite scores for the ANAM4 TBI-MIL for research in mild traumatic brain injury. *Arch Clin Neuropsychol.* 2019;35(1):56-69. doi:10.1093/arclin/acz021
160. Department of Defense. Department of Defense Instruction 6490.13: Comprehensive policy on traumatic brain injury-related neurocognitive assessments by the military services. Updated 2024. Available from: <https://www.esd.whs.mil/Portals/54/Documents/DD/issuances/dodi/649013p.pdf>
161. Vasterling JJ, Grande L, Graefe AC, Alvarez JA. Neuropsychological assessment of posttraumatic stress disorder (PTSD). In C. L. Armstrong & L. A. Morrow (Eds.), *Handbook of Medical Neuropsychology*. Springer;2019:599-619. doi:10.1007/978-3-030-14895-9_27
162. Mattson EK, Nelson NW, Sponheim SR, Disner SG. The impact of PTSD and mTBI on the relationship between subjective and objective cognitive deficits in combat-exposed veterans. *Neuropsychology.* 2019;33(7):913-921. doi:10.1037/neu0000560
163. DeGutis J, Agnoli S, Bernstein JPK, et al. Poorer inhibitory control uniquely contributes to greater functional disability in post-9/11 veterans. *Arch Clin Neuropsychol.* 2023;38(6):944-961. doi:10.1093/arclin/acad012

164. Wolf GK, Mauntel GJ, Kretzmer T, et al. Comorbid posttraumatic stress disorder and traumatic brain injury: Generalization of prolonged-exposure PTSD treatment outcomes to postconcussive symptoms, cognition, and self-efficacy in veterans and active duty service members. *J Head Trauma Rehabil.* 2018;33(2):E53-E63.
doi:10.1097/HTR.0000000000000344
165. Wolf GK, Mauntel GJ, Kretzmer T, et al. Comorbid posttraumatic stress disorder and traumatic brain injury: Generalization of prolonged-exposure PTSD treatment outcomes to postconcussive symptoms, cognition, and self-efficacy in veterans and active duty service members. *J Head Trauma Rehabil.* 2018;33(2):E53-E63.
doi:10.1097/HTR.0000000000000344
166. Cruz LN, Walker NC, Rehman SS, McNerney MW, Madore MR. Examination of congruity between subjective and objective working memory in veterans with mild TBI and relation to psychiatric symptoms and childhood trauma. *Behav Sci (Basel).* 2024;14(10):932. doi:10.3390/bs14100932
167. Neale AC, Aase DM, Soble JR, Baker JC, Phan KL. Disentangling subjective symptom complaints and objective cognitive performance in veterans: Impact of posttraumatic stress disorder and lifetime traumatic brain injury burden. *Appl Neuropsychol Adult.* 2024;31(5):948-963. doi:10.1080/23279095.2022.2096452
168. Ord AS, Martindale SL, Jenks ER, Rowland JA. Subjective cognitive complaints and objective cognitive functioning in combat veterans: Effects of PTSD and deployment mild TBI. *Appl Neuropsychol Adult.* 2023;1-7. doi:10.1080/23279095.2023.2280807
169. Bindels H, Sommer S, Ohmann T, Seddigh S, Schuler M. How are TBI symptoms interconnected? A network analysis approach. *Brain Behav.* 2025;15(2):e70316.
doi:10.1002/brb3.70316
170. Dunbar KE, Raboy AL, Kirby ZM, Taylor PL, Roy MJ. Distinguishing the relative impact of post-traumatic stress disorder and traumatic brain injury on iPad-measured cognitive function. *Cyberpsychol Behav Soc Netw.* 2019;22(12):761-765.
doi:10.1089/cyber.2019.0296
171. de Freitas Cardoso MG, Faleiro RM, de Paula JJ, et al. Cognitive impairment following acute mild traumatic brain injury. *Front Neurol.* 2019;10:198.
doi:10.3389/fneur.2019.00198
172. Sheppard DP, Rau HK, Tritschuh EH, et al. Poorer prospective memory performance is associated with reduced time monitoring among OEF/OIF/OND veterans with a history of blast-related mild traumatic brain injury. *Clin Neuropsychol.* 2023;37(3):577-594.
doi:10.1080/13854046.2022.2068455
173. Parsey CM, Kang HJ, Eaton JC, et al. Chronic frontal neurobehavioural symptoms in combat-deployed military personnel with and without a history of blast-related mild traumatic brain injury. *Brain Inj.* 2023;37(10):1127-1134.
doi:10.1080/02699052.2023.2209740

174. Rice VJ, Schroeder PJ, Cassenti DN, Boykin GL. The effect of traumatic brain injury (TBI) on cognitive performance in a sample of active duty U.S. military service members. *Mil Med.* 2020;185(Suppl 1):184-189. doi:10.1093/milmed/usz202
175. Baker MT, Moring JC, Hale WJ, et al. Acute assessment of traumatic brain injury and post-traumatic stress after exposure to a deployment-related explosive blast. *Mil Med.* 2018;183(11-12):e555-e563. doi:10.1093/milmed/usy100
176. Adam O, Mac Donald CL, Rivet D, et al. Clinical and imaging assessment of acute combat mild traumatic brain injury in Afghanistan. *Neurology.* 2015;85(3):219-27. doi:10.1212/wnl.0000000000001758
177. Manley G, Gardner AJ, Schneider KJ, et al. A systematic review of potential long-term effects of sport-related concussion. *Br J Sports Med.* 2017;51(12):969-977. doi:10.1136/bjsports-2017-097791
178. Walker WC, O'Neil ME, Ou Z, et al. Can mild traumatic brain injury alter cognition chronically? A LIMBIC-CENC multicenter study. *Neuropsychology.* 2023;37(1):1-19. doi:10.1037/neu0000855
179. Ivins B, Risling M, Wisén N, Schwab K, Rostami E. Mild traumatic brain injury in the maturing brain: An investigation of symptoms and cognitive performance in soldiers returning from Afghanistan and Iraq. *J Head Trauma Rehabil.* 2024;39(4):304-317. doi:10.1097/jht.0000000000000919
180. Martindale SL, O'Connor VL, Walker WC, et al. Echoes of the battlefield: Five-year longitudinal cognitive trajectories show trend of recovery for deployment-related mild TBI in the LIMBIC-CENC cohort. *Arch Phys Med Rehabil.* 2025;S0003-9993(25)00658-6. doi:10.1016/j.apmr.2025.04.009
181. Scott JC, Matt GE, Wrocklage KM, et al. A quantitative meta-analysis of neurocognitive functioning in posttraumatic stress disorder. *Psychol Bull.* 2015;141(1):105-40. doi:10.1037/a0038039
182. Samuelson KW, Abadjian L, Jordan JT, Bartel A, Vasterling J, Seal K. The association between PTSD and functional outcome is mediated by perception of cognitive problems rather than objective neuropsychological test performance. *J Trauma Stress.* 2017;30(5):521-530. doi:10.1002/jts.22223
183. Alzoubi KH, Al-Ibbini AM, Nuseir KQ. Prevention of memory impairment induced by post-traumatic stress disorder by cerebrolysin. *Psychiatry Res.* 2018;270:430-437. doi:10.1016/j.psychres.2018.10.008
184. Zlomuzica A, Woud ML, Machulska A, et al. Deficits in episodic memory and mental time travel in patients with post-traumatic stress disorder. *Prog Neuropsychopharmacol Biol Psychiatry.* 2018;83:42-54. doi:10.1016/j.pnpbp.2017.12.014
185. Jacob SN, Dodge CP, Vasterling JJ. Posttraumatic stress disorder and neurocognition: A bidirectional relationship? *Clin Psychol Rev.* 2019;72:101747. doi:10.1016/j.cpr.2019.101747

186. Knight AR, Kim S, Currao A, et al. Assessing attention-deficit/hyperactivity disorder in post-9/11 veterans: Prevalence, measurement correspondence, and comorbidity with posttraumatic stress disorder. *Mil Med.* 2025;190(5-6):e1106-e1113. doi:10.1093/milmed/usae539
187. Jones C, Ramsey K, Beydoun HA, Johnstone B. Neuropsychological deficit profiles for service members with mild traumatic brain injury. *Brain Inj.* 2023;37(9):1116-1125. doi:10.1080/02699052.2023.2209739
188. Thompson RC, Melinder MRD, Daly HA, Warren SL. Disentangling effects of remote mild traumatic brain injury characteristics and posttraumatic stress on processing speed and executive function in veterans. *J Neuropsychol.* 2024;18(3):333-348. doi:10.1111/jnp.12360
189. Van Praag DL, Clossen MC, Polinder S, Wilson L, Maas AI. Post-traumatic stress disorder after civilian traumatic brain injury: A systematic review and meta-analysis of prevalence rates. *J Neurotrauma.* 2019;36(23):3220-3232. doi:10.1089/neu.2018.5759
190. Martindale SL, Bailie JM, Miles SR, et al. Cumulative and contextual effects of low-level blast exposure on cognitive function in military personnel: Interactions With PTSD and mild TBI. *J Head Trauma Rehabil.* 2025;online ahead of print. doi:10.1097/htr.0000000000001107
191. Nelson NW, Disner SG, Anderson CR, et al. Blast concussion and posttraumatic stress as predictors of postcombat neuropsychological functioning in OEF/OIF/OND veterans. *Neuropsychology.* 2020;34(1):116-126. doi:10.1037/neu0000594
192. Van Praag DLG, Van Den Eede F, Wouters K, et al. The impact of neurocognitive functioning on the course of posttraumatic stress symptoms following civilian traumatic brain injury. *J Clin Med.* 2021;10(21):5109. doi:10.3390/jcm10215109
193. Hale AC, Bohnert KM, Grekin R, Sripada RK. Traumatic brain injury in the general population: Incidence, mental health comorbidity, and functional impact. *J Nerv Ment Dis.* 2019;207(1):38-42. doi:10.1097/nmd.0000000000000915
194. Kim SY, Yeh PH, Ollinger JM, et al. Military-related mild traumatic brain injury: Clinical characteristics, advanced neuroimaging, and molecular mechanisms. *Transl Psychiatry.* 2023;13(1):289. doi:10.1038/s41398-023-02569-1
195. Pieper J, Chang DG, Mahasin SZ, et al. Brain amygdala volume increases in veterans and active-duty military personnel with combat-related posttraumatic stress disorder and mild traumatic brain injury. *J Head Trauma Rehabil.* 2020;35(1):E1-E9. doi:10.1097/htr.0000000000000492
196. Raji CA, Willeumier K, Taylor D, et al. Functional neuroimaging with default mode network regions distinguishes PTSD from TBI in a military veteran population. *Brain Imaging Behav.* 2015;9(3):527-534. doi:10.1007/s11682-015-9385-5
197. Santhanam P, Wilson SH, Oakes TR, Weaver LK. Effects of mild traumatic brain injury and post-traumatic stress disorder on resting-state default mode network connectivity. *Brain Res.* 2019;1711:77-82. doi:10.1016/j.brainres.2019.01.015

198. Sydnor VJ, Bouix S, Pasternak O, et al. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. *Neuroimage Clin.* 2020;26:102190. doi:10.1016/j.nicl.2020.102190
199. Huang M, Lewine JD, Lee RR. Magnetoencephalography for mild traumatic brain injury and posttraumatic stress disorder. *Neuroimaging Clin N Am.* 2020;30(2):175-192. doi:10.1016/j.nic.2020.02.003
200. Rowland JA, Stapleton-Kotloski JR, Godwin DW, Hamilton CA, Martindale SL. The functional connectome and long-term symptom presentation associated with mild traumatic brain injury and blast exposure in combat veterans. *J Neurotrauma.* 2024;41(23-24):2513-2527. doi:10.1089/neu.2023.0315
201. Saar-Ashkenazy R, Naparstek S, Ditzter Y, et al. Neuro-psychiatric symptoms in directly and indirectly blast exposed civilian survivors of urban missile attacks. *BMC Psychiatry.* 2023;23(1):423. doi:10.1186/s12888-023-04943-1
202. Dennis EL, Newsome MR, Lindsey HM, et al. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study. *Hum Brain Mapp.* 2023;44(5):1888-1900. doi:10.1002/hbm.26179
203. Mu W, Catenaccio E, Lipton ML. Neuroimaging in blast-related mild traumatic brain injury. *J Head Trauma Rehabil.* 2017;32(1):55-69. doi:10.1097/HTR.0000000000000213
204. Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. *Eur J Radiol.* 2022;147:110117. doi:10.1016/j.ejrad.2021.110117
205. Miller DR, Hayes JP, Lafleche G, Salat DH, Verfaellie M. White matter abnormalities are associated with chronic postconcussion symptoms in blast-related mild traumatic brain injury. *Hum Brain Mapp.* 2016;37(1):220-9. doi:10.1002/hbm.23022
206. Meier TB, España LY, Kirk AJ, et al. Association of previous concussion with hippocampal volume and symptoms in collegiate-aged athletes. *J Neurotrauma.* 2021;38(10):1358-1367. doi:10.1089/neu.2020.7143
207. Martindale SL, Rostami R, Shura RD, Taber KH, Rowland JA. Brain volume in veterans: Relationship to posttraumatic stress disorder and mild traumatic brain injury. *J Head Trauma Rehabil.* 2020;35(4):E330-e341. doi:10.1097/htr.0000000000000559
208. Sullivan DR, Hayes JP, Lafleche G, Salat DH, Verfaellie M. Functional brain alterations associated with cognitive control in blast-related mild traumatic brain injury. *J Int Neuropsychol Soc.* 2018;24(7):662-672. doi:10.1017/S1355617718000279
209. Kaltiainen H, Liljestrom M, Helle L, et al. Mild traumatic brain injury affects cognitive processing and modifies oscillatory brain activity during attentional tasks. *J Neurotrauma.* 2019;36(14):2222-2232. doi:10.1089/neu.2018.6306

210. Banks SD, Coronado RA, Clemons LR, et al. Thalamic functional connectivity in mild traumatic brain injury: Longitudinal associations with patient-reported outcomes and neuropsychological tests. *Arch Phys Med Rehabil.* 2016;97(8):1254-61. doi:10.1016/j.apmr.2016.03.013
211. Grossman EJ, Inglese M. The role of thalamic damage in mild traumatic brain injury. *J Neurotrauma.* 2016;33(2):163-7. doi:10.1089/neu.2015.3965
212. Pietrzak RH, Averill LA, Abdallah CG, et al. Amygdala-hippocampal volume and the phenotypic heterogeneity of posttraumatic stress disorder: A cross-sectional study. *JAMA Psychiatry.* 2015;72(4):396-398. doi:10.1001/jamapsychiatry.2014.2470
213. Henigsberg N, Kalemba P, Petrović ZK, Šečić A. Neuroimaging research in posttraumatic stress disorder—Focus on amygdala, hippocampus and prefrontal cortex. *Prog Neuropsychopharmacol Biol Psychiatry.* 2019;90:37-42. doi:10.1016/j.pnpbp.2018.11.003
214. Brashers-Krug T, Jorge R. Bi-directional tuning of amygdala sensitivity in combat veterans investigated with fMRI. *PLoS One.* 2015;10(6):e0130246. doi:10.1371/journal.pone.0130246
215. Dennis EL, Disner SG, Fani N, et al. Altered white matter microstructural organization in posttraumatic stress disorder across 3047 adults: Results from the PGC-ENIGMA PTSD consortium. *Mol Psychiatry.* 2021;26(8):4315-4330. doi:10.1038/s41380-019-0631-x
216. DeGutis J, Sullivan DR, Agnoli S, et al. Less is more: Smaller hippocampal subfield volumes predict greater improvements in posttraumatic stress disorder symptoms over 2 years. *Behav Neurosci.* 2024;138(2):94-107. doi:10.1037/bne0000578
217. Butler O, Adolf J, Gleich T, et al. Military deployment correlates with smaller prefrontal gray matter volume and psychological symptoms in a subclinical population. *Transl Psychiatry.* 2017;7(2):e1031. doi:10.1038/tp.2016.288
218. Dahlgren MK, Laifer LM, VanElzakker MB, et al. Diminished medial prefrontal cortex activation during the recollection of stressful events is an acquired characteristic of PTSD. *Psychol Med.* 2018;48(7):1128-1138. doi:10.1017/S003329171700263X
219. Morey RA, Haswell CC, Hooper SR, De Bellis MD. Amygdala, hippocampus, and ventral medial prefrontal cortex volumes differ in maltreated youth with and without chronic posttraumatic stress disorder. *Neuropsychopharmacology.* 2016;41(3):791-801. doi:10.1038/npp.2015.205
220. Brown EM, Salat DH, Milberg WP, Fortier CB, McGlinchey RE. Accelerated longitudinal cortical atrophy in OEF/OIF/OND veterans with severe PTSD and the impact of comorbid TBI. *Hum Brain Mapp.* 2022;43(12):3694-3705. doi:10.1002/hbm.25877
221. Kinzel P, Marx CE, Sollmann N, et al. Serum neurosteroid levels are associated with cortical thickness in individuals diagnosed with posttraumatic stress disorder and history of mild traumatic brain injury. *Clin EEG Neurosci.* 2020;51(4):285-299. doi:10.1177/1550059420909676

222. Bae S, Sheth C, Legarreta M, McGlade E, Lyoo IK, Yurgelun-Todd DA. Volume and shape analysis of the hippocampus and amygdala in veterans with traumatic brain injury and posttraumatic stress disorder. *Brain Imaging Behav.* 2020;14(5):1850-1864. doi:10.1007/s11682-019-00127-2

223. Siehl S, Zohair R, Guldner S, Nees F. Gray matter differences in adults and children with posttraumatic stress disorder: A systematic review and meta-analysis of 113 studies and 11 meta-analyses. *J Affect Disord.* 2023;333:489-516. doi:10.1016/j.jad.2023.04.028

224. Gimbel SI, Wang CC, Hungerford L, Twamley EW, Ettenhofer ML. Associations of mTBI and post-traumatic stress to amygdala structure and functional connectivity in military service members. *Front Neuroimaging.* 2023;2:1129446. doi:10.3389/fnimg.2023.1129446

225. Esagoff AI, Stevens DA, Kosyakova N, et al. Neuroimaging correlates of post-traumatic stress disorder in traumatic brain injury: A systematic review of the literature. *J Neurotrauma.* 2023;40(11-12):1029-1044. doi:10.1089/neu.2021.0453

226. Kim S, Ollinger J, Song C, et al. White matter alterations in military service members with remote mild traumatic brain injury. *JAMA Netw Open.* 2024;7(4):e248121. doi:10.1001/jamanetworkopen.2024.8121

227. Kaplan GB, Leite-Morris KA, Wang L, et al. Pathophysiological bases of comorbidity: Traumatic brain injury and post-traumatic stress disorder. *J Neurotrauma.* 2018;35(2):210-225. doi:10.1089/neu.2016.4953

228. Klimova A, Korgaonkar MS, Whitford T, Bryant RA. Diffusion tensor imaging analysis of mild traumatic brain injury and posttraumatic stress disorder. *Biol Psychiatry Cogn Neurosci Neuroimaging.* 2019;4(1):81-90. doi:10.1016/j.bpsc.2018.10.004

229. Santhanam P, Teslovich T, Wilson SH, Yeh PH, Oakes TR, Weaver LK. Decreases in white matter integrity of ventro-limbic pathway linked to post-traumatic stress disorder in mild traumatic brain injury. *J Neurotrauma.* 2019;36(7):1093-1098. doi:10.1089/neu.2017.5541

230. Lepage C, de Pierrefeu A, Koerte IK, et al. White matter abnormalities in mild traumatic brain injury with and without post-traumatic stress disorder: A subject-specific diffusion tensor imaging study. *Brain Imaging Behav.* 2018;12(3):870-881. doi:10.1007/s11682-017-9744-5

231. Runyan A, Philippi CL, Pessin S, et al. Comparing resting-state connectivity of working memory networks in U.S. service members with mild traumatic brain injury and posttraumatic stress disorder. *Brain Res.* 2022;1796:148099. doi:10.1016/j.brainres.2022.148099

232. Dwulit AK, Sun D, Haswell CC, et al. Dynamic and static resting-state functional connectivity of canonical networks in military and civilian populations with posttraumatic stress disorder and/or mild traumatic brain injury. *Biol Psychiatry Cogn Neurosci Neuroimaging.* 2025;online ahead of print. doi:10.1016/j.bpsc.2025.08.002

233. Song C, Yeh PH, Ollinger J, et al. Altered metabolic interrelationships in the cortico-limbic circuitry in military service members with persistent post-traumatic stress disorder symptoms following mild traumatic brain injury. *Brain Connect.* 2022;12(7):602-616. doi:10.1089/brain.2021.0036

234. Andrews MJ, Salat DH, Milberg WP, McGlinchey RE, Fortier CB. Poor sleep and decreased cortical thickness in veterans with mild traumatic brain injury and post-traumatic stress disorder. *Mil Med Res.* 2024;11(1):51. doi:10.1186/s40779-024-00557-0

235. Mohamed AZ, Lagopoulos J, Nasrallah FA, Shan Z. Self-reported fatigue was associated with increased white-matter alterations in long-term traumatic brain injury and posttraumatic stress disorder patients. *Neuroscience.* 2023;520:46-57. doi:10.1016/j.neuroscience.2023.03.029

236. McGill MB, Clark AL, Schnyer DM. Traumatic brain injury, posttraumatic stress disorder, and vascular risk are independently associated with white matter aging in Vietnam-era veterans. *J Int Neuropsychol Soc.* 2024;30(10):923-934. doi:10.1017/s1355617724000626

237. Waters AB, Bottari SA, Jones LC, Lamb DG, Lewis GF, Williamson JB. Regional associations of white matter integrity and neurological, post-traumatic stress disorder and autonomic symptoms in veterans with and without history of loss of consciousness in mild TBI. *Front Neuroimaging.* 2023;2:1265001. doi:10.3389/fnimg.2023.1265001

238. Vasterling JJ, Jacob SN, Rasmusson A. Traumatic brain injury and posttraumatic stress disorder: Conceptual, diagnostic, and therapeutic considerations in the context of co-occurrence. *J Neuropsychiatry Clin Neurosci.* 2018;30(2):91-100. doi:10.1176/appi.neuropsych.17090180

239. Shalev A, Cho D, Marmar CR. Neurobiology and treatment of posttraumatic stress disorder. *Am J Psychiatry.* 2024;181(8):705-719. doi:10.1176/appi.ajp.20240536

240. Fleming CE, Kholodkov T, Dillon KH, Belvet B, Crawford EF. Actuarial prediction of psychotherapy retention among Iraq-Afghanistan veterans with posttraumatic stress disorder. *Psychol Serv.* 2018;15(2):172-180. doi:10.1037/ser0000139

241. Crocker LD, Jurick SM, Thomas KR, et al. Worse baseline executive functioning is associated with dropout and poorer response to trauma-focused treatment for veterans with PTSD and comorbid traumatic brain injury. *Behaviour Res Ther.* 2018;108:68-77. doi:10.1016/j.brat.2018.07.004

242. Crocker LD, Sullan MJ, Jurick SM, et al. Baseline executive functioning moderates treatment-related changes in quality of life in veterans with posttraumatic stress disorder and comorbid traumatic brain injury. *J Trauma Stress.* 2023;36(1):94-105. doi:10.1002/jts.22883

243. Babakhanyan I, Sedigh R, Remigio-Baker R, Hungerford L, Bailie JM. Traumatic brain injury rehabilitation for warfighters with post-traumatic stress. *NeuroRehabilitation.* 2024;55(3):295-302. doi:10.3233/nre-230274

244. Berke DS, Kline NK, Wachen JS, et al. Predictors of attendance and dropout in three randomized controlled trials of PTSD treatment for active duty service members. *Behav Res Ther.* 2019;118:7-17. doi:10.1016/j.brat.2019.03.003
245. Mikolic A, Polinder S, Retel Helmrich IRA, Haagsma JA, Cnossen MC. Treatment for posttraumatic stress disorder in patients with a history of traumatic brain injury: A systematic review. *Clin Psychol Rev.* 2019;73:101776. doi:10.1016/j.cpr.2019.101776
246. Janssen EPJ, Spauwen PJJ, Rijnen SJM, Ponds R. Exploration of eye movement desensitization and reprocessing in treating posttraumatic stress-disorder in patients with acquired brain injury: A retrospective case series. *Eur J Psychotraumatol.* 2023;14(2):2264117. doi:10.1080/20008066.2023.2264117
247. Steenkamp MM, Litz BT, Hoge CW, Marmar CR. Psychotherapy for military-related PTSD: A review of randomized clinical trials. *JAMA.* 2015;314(5):489-500. doi:10.1001/jama.2015.8370
248. Walter KH, Dickstein BD, Barnes SM, Chard KM. Comparing effectiveness of CPT to CPT-C among U.S. veterans in an interdisciplinary residential PTSD/TBI treatment program. *J Trauma Stress.* 2014;27(4):438-45. doi:10.1002/jts.21934
249. Cole MA, Muir JJ, Gans JJ, et al. Simultaneous treatment of neurocognitive and psychiatric symptoms in veterans with post-traumatic stress disorder and history of mild traumatic brain injury: A pilot study of mindfulness-based stress reduction. *Mil Med.* 2015;180(9):956-63. doi:10.7205/MILMED-D-14-00581
250. Cooper DB, Curtiss G, Armistead-Jehle P, et al. Neuropsychological performance and subjective symptom reporting in military service members with a history of multiple concussions: Comparison with a single concussion, posttraumatic stress disorder, and orthopedic trauma. *J Head Trauma Rehabil.* 2018;33(2):81-90. doi:10.1097/HTR.0000000000000375
251. Jak AJ, Jurick S, Crocker LD, et al. SMART-CPT for veterans with comorbid post-traumatic stress disorder and history of traumatic brain injury: A randomised controlled trial. *J Neurol Neurosurg Psychiatry.* 2019;90(3):333-341. doi:10.1136/jnnp-2018-319315
252. Cotner BA, Nakase-Richardson R, O'Connor DR, et al. Barriers and facilitators to accessing rehabilitation health care: A Veterans Affairs Traumatic Brain Injury Model Systems qualitative study. *Arch Phys Med Rehabil.* 2023;104(3):380-389. doi:10.1016/j.apmr.2022.09.020
253. Harward LK, Lento RM, Teer A, et al. Massed treatment of posttraumatic stress disorder, traumatic brain injury, and co-occurring conditions: The Home Base intensive outpatient program for military veterans and service members. *Front Psychiatry.* 2024;15:1387186. doi:10.3389/fpsyg.2024.1387186
254. Madigan Army Medical Center. Traumatic Brain Injury and Intrepid Spirit Center. Available from: <https://madigan.tricare.mil/Clinics/Intrepid-Spirit-Center>

255. National Intrepid Spirit Center. Intensive outpatient program. Updated 2024. Available from: <https://health.mil/Military-Health-Topics/Centers-of-Excellence/NICOE/Clinical-Programs-and-Services/Clinical-Programs/Intensive-Outpatient-Program>
256. DeGraba TJ, Williams K, Koffman R, et al. Efficacy of an interdisciplinary intensive outpatient program in treating combat-related traumatic brain injury and psychological health conditions. *Front Neurol.* 2020;11:580182. doi:10.3389/fneur.2020.580182
257. Jackson S, Baity MR, Bobb K, Swick D, Giorgio J. Stress inoculation training outcomes among veterans with PTSD and TBI. *Psychol Trauma.* 2019;11(8):842-850. doi:10.1037/tra0000432
258. Novakovic-Agopian T, Posecion L, Kornblith E, et al. Goal-oriented attention self-regulation training improves executive functioning in veterans with post-traumatic stress disorder and mild traumatic brain injury. *J Neurotrauma.* 2021;38(5):582-592. doi:10.1089/neu.2019.6806
259. Huntley JH, Rezvani Habibabadi R, Vaishnavi S, Khoshpouri P, Kraut MA, Yousem DM. Transcranial magnetic stimulation and its imaging features in patients with depression, post-traumatic stress disorder, and traumatic brain injury. *Acad Radiol.* 2023;30(1):103-112. doi:10.1016/j.acra.2022.03.016
260. Lindsey A, Ellison RL, Herrold AA, et al. rTMS/iTBS and cognitive rehabilitation for deficits associated with TBI and PTSD: A theoretical framework and review. *J Neuropsychiatry Clin Neurosci.* 2023;35(1):28-38. doi:10.1176/appi.neuropsych.21090227
261. Namgung E, Kim M, Yoon S. Repetitive transcranial magnetic stimulation in trauma-related conditions. *Neuropsychiatr Dis Treat.* 2019;15:701-712. doi:10.2147/NDT.S189498
262. Philip NS, Ramanathan D, Gamboa B, et al. Repetitive transcranial magnetic stimulation for depression and posttraumatic stress disorder in veterans with mild traumatic brain injury. *Neuromodulation.* 2023;26(4):878-884. doi:10.1016/j.neurom.2022.11.015
263. Siddiqi SH, Philip NS, Palm ST, et al. A potential target for noninvasive neuromodulation of PTSD symptoms derived from focal brain lesions in veterans. *Nat Neurosci.* 2024;27(11):2231-2239. doi:10.1038/s41593-024-01772-7
264. Mollica A, Safavifar F, Fralick M, Giacobbe P, Lipsman N, Burke MJ. Transcranial magnetic stimulation for the treatment of concussion: A systematic review. *Neuromodulation.* 2021;24(5):803-812. doi:10.1111/ner.13319
265. Duecker K, Doelling KB, Breska A, Coffey EBJ, Sivarao DV, Zoefel B. Challenges and approaches in the study of neural entrainment. *J Neurosci.* 2024;44(40):doi:10.1523/jneurosci.1234-24.2024
266. Frueh BC, Crowder C, Taghva A. Individually guided neuromodulation in special operator veterans with symptoms of PTSD and traumatic brain injury: Preliminary data from a chart review. *Front Neurol.* 2025;16:1495034. doi:10.3389/fneur.2025.1495034

267. Bailar-Heath M, Burke R, Thomas D, Morrow CD. A retrospective chart review to assess the impact of alpha-guided transcranial magnetic stimulation on symptoms of PTSD and depression in active-duty special operations service members. *Front Psychiatry*. 2024;15:1354763. doi:10.3389/fpsyg.2024.1354763
268. Uomoto JM, Boyd C, Nair R, et al. A systematic review of music therapy for symptoms of traumatic brain injury and posttraumatic stress disorder in adults. *NeuroRehabilitation*. 2025;10538135251387279. doi:10.1177/10538135251387279
269. Haws K, Mak S, Greer S, et al. A virtual functional medicine-based interdisciplinary and integrative intervention for Gulf War Illness. *Mil Med*. 2024;189(Suppl 3):99-105. doi:10.1093/milmed/usae054
270. Marks MR, Dux MC, Rao V, Albrecht JS. Treatment patterns of anxiety and posttraumatic stress disorder following traumatic brain injury. *J Neuropsychiatry Clin Neurosci*. 2022;34(3):247-253. doi:10.1176/appi.neuropsych.21040104
271. Porter KE, Stein MB, Grau PP, et al. Impact of PTSD treatment on postconcussive symptoms in veterans: A comparison of sertraline, prolonged exposure, and their combination. *J Psychiatr Res*. 2024;173:64-70. doi:10.1016/j.jpsychires.2024.03.011
272. Friedman MJ. Pharmacological treatments for PTSD. In: *Posttraumatic and Acute Stress Disorders*. Springer International Publishing; 2015:93-114
273. Reist C, Streja E, Tang CC, Shapiro B, Mintz J, Hollifield M. Prazosin for treatment of post-traumatic stress disorder: A systematic review and meta-analysis. *CNS Spectrums*. 2021;26(4):338-344. doi:10.1017/s1092852920001121
274. Raut SB, Canales JJ, Ravindran M, et al. Effects of propranolol on the modification of trauma memory reconsolidation in PTSD patients: A systematic review and meta-analysis. *J Psychiatr Res*. 2022;150:246-256. doi:10.1016/j.jpsychires.2022.03.045
275. Golier JA, Li X, Bzien M, et al. Efficacy and safety of mifepristone in the treatment of male US veterans with posttraumatic stress disorder: A phase 2a randomized clinical trial. *JAMA Netw Open*. 2023;6(5):e2310223. doi:10.1001/jamanetworkopen.2023.10223
276. McAllister TW, Zafonte R, Jain S, et al. Randomized placebo-controlled trial of methylphenidate or galantamine for persistent emotional and cognitive symptoms associated with PTSD and/or traumatic brain injury. *Neuropsychopharmacology*. 2016;41(5):1191-8. doi:10.1038/npp.2015.282
277. Zalta AK, Tirone V, Orlowska D, et al. Examining moderators of the relationship between social support and self-reported PTSD symptoms: A meta-analysis. *Psychol Bull*. 2021;147(1):33-54. doi:10.1037/bul0000316
278. Williamson AK, Riendeau RP, Stolzmann K, et al. An exploratory analysis of self-reported protective factors against self-harm in an enrolled veteran general mental health population. *Mil Med*. 2019;184(11-12):e738-e744. doi:10.1093/milmed/usz111

279. Nicther B, Haller M, Norman S, Pietrzak RH. Risk and protective factors associated with comorbid PTSD and depression in U.S. military veterans: Results from the National Health and Resilience in Veterans Study. *J Psychiatr Res.* 2020;121:56-61.
doi:10.1016/j.jpsychires.2019.11.008

280. Lange RT, French LM, Bailie JM, et al. Clinical utility of PTSD, resilience, sleep, and blast as risk factors to predict poor neurobehavioral functioning following traumatic brain injury: A longitudinal study in U.S. military service members. *Qual Life Res.* 2022;31(8):2411-2422. doi:10.1007/s11136-022-03092-4