Letter to the editor: G6PD deficiency in the Tafenoquine era
David R. Sayers, MD, MTM&H; Bryant J. Webber, MD, MPH

Summary of the 2018–2019 influenza season among Department of Defense service members and other beneficiaries
Angelia A. Eick-Cost, PhD; Saixia Ying, PhD; Zheng Hu, MS

Brief report: Direct care cost of heat illness to the Army, 2016–2018
Lanna J. Forrest, PhD, MSPH; Alexis L. Maule, PhD; Ashleigh K. McCabe, MPH; Julianna Kebisek, MPH; Ryan A. Steelman, MPH; John F. Ambrose, PhD

Animal-related injuries in veterinary services personnel, U.S. Army, 2001–2018
R. Allen Messenger, DVM, MPH; Shauna Stahlman, PhD, MPH; Andy Chern, MD, MPH
In the December 2019 issue of the MSMR, Lee and Poitras reported a 2.2% prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among active duty U.S. service members between 2004 and 2018. Their study utilized Health Level 7-formatted chemistry data archived in the Composite Health Care System (CHCS), but it did not stratify by quantitative or qualitative testing.

When tafenoquine was approved by the U.S. Food and Drug Administration in 2018 for chemophrophylaxis and radical cure of Plasmodium vivax, the distinction between quantitative and qualitative testing became clinically significant. Formerly, primaquine was the only approved medication to treat hypnozoites, the dormant form of the parasite in the liver stage of malaria. Its use required a “normal” G6PD activity level, the threshold of which on qualitative tests was usually established at 30%–40%. Tafenoquine, with its longer half-life of 14 days (compared to 6 hours for primaquine), provides a far simpler dosing regimen for malaria chemoprophylaxis and radical cure, but it may precipitate hemolytic anemia at higher levels of G6PD activity. Consequently, the U.S. Centers for Disease Control and Prevention recommends a quantitative G6PD assessment before tafenoquine prescription to ensure activity exceeding 70%. An X-linked genetic disorder, G6PD deficiency in males is usually severe (enzyme activity < 30%), meaning that a “deficient” result on qualitative testing contraindicates the use of both primaquine and tafenoquine. The same is true for females who are homozygous or double heterozygous for mutant alleles—both of which are rare. However, single heterozygous females usually have milder deficiency (enzyme activity 30%–80%), meaning they would have a “normal” result on qualitative testing and could safely take primaquine but potentially not tafenoquine.

Universal G6PD deficiency screening is required across the U.S. Armed Forces, but current policy does not mandate quantitative testing. Since tafenoquine may improve medication adherence and thus become a preferable antimalarial option, it is important to understand how many service members have only been qualitatively tested. In the U.S. Air Force, 167,945 active duty members had at least 1 G6PD test performed and recorded in the CHCS between 1 January 2015 and 31 December 2019. Of these, only 4,325 (2.6%), including 1,602 females, had a normal qualitative test with no quantitative result. This low percentage should continue to decrease since quantitative testing is standard protocol for all new recruits at U.S. Air Force basic military training as well as new officer accessions at the U.S. Air Force Academy and Officer Training School (email communication, Maj Dianne Blank and Lt Col Kevin Baldovich, December 2019 and January 2020, respectively).

While the article by Lee and Poitras provides valuable information, G6PD deficiency surveillance in the tafenoquine era should incorporate quantitative values. These values should also be documented in service members’ deployment readiness records. For example, the Aeromedical Services Information Management System, the U.S. Air Force’s readiness platform, defines G6PD status as either “normal” or “deficient”—essentially as a qualitative test, even if a quantitative enzyme activity level is available in the electronic health record. This may lead to improper prescription of tafenoquine to airmen, particularly females, who are coded as having “normal” G6PD activity levels but whose levels are in fact intermediate.

Author affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD (Maj Sayers; Lt Col Webber); Public Health and Preventive Medicine Department, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH (Lt Col Webber).

Disclaimer: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Air Force, the Department of Defense, or the U.S. Government.

REFERENCES

In reply: We appreciate the response by Drs. Sayers and Webber to our article published in the December 2019 issue of the MSMR on the prevalence of G6PD deficiency among active duty service members. We are in agreement that quantitative as well as qualitative testing for the genetic condition is imperative to prevent the potentially harmful side effects from the use of the 8-aminoquinoline (8-AQ) class of antimalarial drugs (tafenoquine and primaquine) for malaria chemoprophylaxis and radical cure. We applaud the Air Force for the implementation of quantitative screening of G6PD deficiency among new recruits.

Our article highlights the need for leadership awareness of G6PD deficiency diagnoses to reduce the possibility of adverse events from the use of the 8-AQ class of antimalarial drugs. The inclusion of quantitative G6PD testing is an important tool to further identify at-risk service members.

Respectfully,
MAJ Jangwoo Lee, PhD; Beth Poitras, MPH
Summary of the 2018–2019 Influenza Season Among Department of Defense Service Members and Other Beneficiaries

Angelia A. Eick-Cost, PhD; Saixia Ying, PhD; Zheng Hu, MS

The Armed Forces Health Surveillance Branch conducts weekly surveillance of influenza activity among Department of Defense (DoD) populations each influenza season. This report provides a summary of the data from the 2018–2019 influenza season. Ambulatory data for influenza-like illnesses (ILI), influenza hospitalization data, and lab data for influenza-confirmed cases were used for the surveillance. The 2018–2019 season differed from past seasons in that it was much longer, had a later peak, and the predominant strain of influenza changed from influenza A(H1N1)pdm09 at the beginning of the season to influenza A(H3N2) in the middle of the season. Non-service member beneficiaries accounted for the majority of ILI-related encounters and hospitalizations. However, there were still 149 influenza-related hospitalizations among service members during the 2018–2019 season. Continued weekly surveillance of influenza among DoD populations is crucial to track increases in activity each season and the potential emergence of new and/or severe influenza subtypes.

METHODS

Medical encounter and demographic data from the Defense Medical Surveillance System (DMSS) and Health Level 7 (HL7)-formatted laboratory data from the Navy and Marine Corps Public Health Center (NMCPHC) were used for this analysis. The HL7-formatted laboratory data are nonstandardized, so NMCPHC applies an algorithm to the data to identify influenza tests and standardize results. The surveillance period for the 2018–2019 influenza season was 30 September 2018 through 1 June 2019 (influenza weeks 40 through 22). Data from the 2016–2017 and 2017–2018 influenza seasons are also presented for comparison. The surveillance population included all individuals who were Military Health System (MHS) beneficiaries (i.e., active and reserve/guard component service members, retired service members, family members and other dependents of service members and retirees, and other authorized government employees and family members) who accessed care through either a military medical facility/provider or a civilian facility/provider (if paid for by the MHS). However, medical data from military treatment facilities (MTFs) that were using MHS GENESIS at the time of this surveillance (Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center) are not captured in the DMSS data. Therefore, medical encounter and laboratory data from these MTFs are not included in the analysis. For the analysis, populations were grouped as service members or other beneficiaries.

Outpatient medical encounters were classified as an influenza-like illness (ILI) encounter if they had an ILI diagnosis code (International Classification of Diseases, 10th Revision [ICD-10] codes B97.89, H66.9, H66.90, H66.91, H66.92, H66.93, J00, J01.9, J01.90, J06.9, J09, J09.X, J09.X1, J09.X2, J09.X3, J09.X9, J10, J10.0, J10.00, J10.01, J10.08, J10.1, J10.2, J10.8, J10.81, J10.82, J10.83, J10.89, J11, J11.0, J11.00, J11.08, J11.1, J11.2, J11.8, J11.81, J11.82, J11.83, J11.89, J12.89, J12.9, J18, J18.1, J18.8, J18.9, J20.9, J40, R05, R50.9) in any diagnostic position. The percentage of all outpatient encounters that were classified as ILI encounters was calculated for...
Virus surveillance

Among all beneficiaries, there were 149,254 respiratory specimens tested for influenza during the 2018–2019 influenza season (data not shown). Of those, 30,464 (20.4%) were positive for influenza. Service members had a lower percentage of specimens testing positive for influenza (16.7%) compared to other beneficiaries (21.8%). Among all populations, influenza A (any subtype) predominated during this season, with 28,454 (93.4%) of all positive specimens testing positive for influenza A. The distribution of subtypes among influenza A positive specimens was 73.3% influenza A (not subtype), 12.6% A(H3N2), and 7.5% A(H1N1)pdm09. The remaining specimens were positive for influenza B (1,805; 5.9%) or an influenza A/B coinfection (205; 0.7%). The distribution of subtypes was similar between service members and other beneficiaries (data not shown).

The distribution of influenza serotypes and the percentage of specimens positive for influenza by week are presented in Figures 1a and 1b for service members and other beneficiaries, respectively. Among subtyped influenza A specimens, A(H1N1)pdm09 predominated early in the season, but A(H3N2) was predominant after week 3. The highest numbers of positive specimens and the highest percentages of positives occurred during week 9 for service members and weeks 6 and 7 for other beneficiaries. These results indicate peak influenza activity for the season during the month of February 2019.

Outpatient encounter ILI surveillance

During the 2018–2019 season, the weekly percentages of outpatient encounters due to an ILI for service members were above baseline (2.1%) for 22 weeks (weeks 46–15) (Figure 2a). A similar pattern was seen among other beneficiaries, for whom the percentages were above baseline (3.4%) for 20 weeks (weeks 47–14) (Figure 2b). This pattern is similar to the percentage of outpatient encounters due to ILI during the prior 2 influenza seasons.

Earlier in the 2018–2019 season, between weeks 40–52, the trend and magnitude of the percentages of encounters due to ILI were also similar to those of the past 2 seasons (Figures 2a and 2b). All seasons had peaks during weeks 52 and 1. This timing coincides with the end-of-year holiday period. Rather than a true peak in ILI activity though, this peak was being driven by a differential decrease in the total number of medical encounters and
Although vaccination rates of service members and other DoD beneficiaries were very high, influenza cases still occurred among this population during the 2018–2019 season. Cases of influenza among service members are required to receive a seasonal influenza vaccine annually. During the 2018–2019 season, DoD policy set a goal of 90% of service members vaccinated by 15 January 2019. Although vaccination rates of service members were very high, influenza cases still occurred among this population during the 2018–2019 season. Cases of influenza among service members may be attributable to infections occurring before receipt of the influenza vaccine, within the 14 days following vaccination when the vaccine may not provide complete protection, or after vaccination because the vaccine is less than 100% effective. During the 2018–2019 season, vaccine effectiveness among the general U.S. population was particularly low because of the emergence of a drifted A/H3N2 (clade 3C.3a) circulating virus that differed from the vaccine strain. Although the influenza vaccine is not 100% effective at preventing influenza infection, a recent study showed that vaccination also decreased the risk of hospitalization and admission to the intensive care unit and decreased severity of illness. Continued vaccination of service members and other DoD beneficiaries is crucial to protecting against influenza.

Editorial Comment

The 2018–2019 influenza season among service members and other DoD beneficiaries was a longer season with a later peak compared to the prior 2 seasons. The season also differed from prior seasons in that the beginning of the season was predominated by influenza A(H1N1)pdm09 while influenza A(H3N2) predominated after week 3; most seasons have just 1 influenza A subtype predominating. As expected, the influenza season among DoD service members and beneficiaries was similar to the season among the general U.S. population.

Although the DoD influenza surveillance data include information from around the world, the majority of encounters and laboratory data came from the U.S. and to a lesser extent Europe, which also had an influenza season similar to that in the U.S. As with the general U.S. population, the elderly (> 64 years of age) accounted for the majority of influenza hospitalizations among other beneficiaries. The elderly population accounted for 66% of all other beneficiary hospitalizations for the season compared to 47% among the general U.S. population.

A seasonal influenza vaccine is still the best way to protect against influenza. Service members are required to receive a seasonal influenza vaccine annually. During the 2018–2019 season, DoD policy set a goal of 90% of service members vaccinated by 15 January 2019. Although vaccination rates of service members were very high, influenza cases still occurred among this population during the 2018–2019 season. Cases of influenza among service members may be attributable to infections occurring before receipt of the influenza vaccine, within the 14 days following vaccination when the vaccine may not provide complete protection, or after vaccination because the vaccine is less than 100% effective. During the 2018–2019 season, vaccine effectiveness among the general U.S. population was particularly low because of the emergence of a drifted A/H3N2 (clade 3C.3a) circulating virus that differed from the vaccine strain. Although the influenza vaccine is not 100% effective at preventing influenza infection, a recent study showed that vaccination also decreased the risk of hospitalization and admission to the intensive care unit and decreased severity of illness. Continued vaccination of service members and other DoD beneficiaries is crucial to protecting against influenza.

Influenza-related hospitalizations

Of the total 5,847 influenza-related hospitalizations during the 2018–2019 season, 149 occurred among service members (Figure 3). The majority of hospitalizations occurred among other beneficiaries (n=5,698; 97.5%). Hospitalizations peaked overall during week 11 (n=471), but service member hospitalizations peaked during week 10 (n=18) (Figure 3). Among other beneficiaries, the majority of influenza-related hospitalizations occurred among those 65 years of age or older (n=3,778; 66.3%) (Figure 4).

FIGURE 1b. Numbers of laboratory-confirmed influenza specimens by serotype and percentages of respiratory specimens positive for influenza by surveillance week, other DoD beneficiaries, 2018–2019 influenza season

<table>
<thead>
<tr>
<th>Influenza week no.</th>
<th>A (not subtyped)</th>
<th>A(H3N2)</th>
<th>A(H1N1)pdm09</th>
<th>B</th>
<th>A&B</th>
<th>Percent positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

DoD, Department of Defense; No., number.
% of outpatient encounters due to ILI

ILI, influenza-like illness; no., number.

FIGURE 2a. Percentages of outpatient encounters due to ILI, service members, U.S. Armed Forces, 2018–2019 influenza season

FIGURE 2b. Percentages of outpatient encounters due to ILI, other DoD beneficiaries, 2018–2019 influenza season

ILI, influenza-like illness; DoD, Department of Defense; no., number.
FIGURE 3. Influenza-related hospitalizations, service members and other DoD beneficiaries, 2018–2019 influenza season

FIGURE 4. Age distribution of beneficiaries with influenza-related hospitalizations, 2018–2019 influenza season

DoD, Department of Defense; No., number.

combat influenza infections and lessen disease severity. This season also demonstrated the importance of annual influenza surveillance, as the seasons differ from year to year.

REFERENCES

Heat injury surveillance in the Department of Defense (DoD) includes the more severe conditions, heat exhaustion and heat stroke. Hospitalization occurs more frequently among service members experiencing heat stroke; however, both conditions can result in hospitalization and may require follow-up medical care. Between 2014 and 2018, annual rates of heat illness have increased among U.S. active component members. This report describes the total direct medical cost to the Army associated with heat exhaustion and heat stroke from 2016 through 2018.

METHODS

The Weather-Related Injury Repository (WRIR) contains clinical data and medical event reports for heat and cold weather injuries in Army soldiers. The WRIR health encounter and admission data used in this analysis were derived from DoD military medical treatment facility medical records and paid TRICARE claims for beneficiaries at civilian facilities. Heat illness was identified using International Classification of Diseases, 10th Revision (ICD-10) codes for heat stroke (T67.0*) and heat exhaustion (T67.3*, T67.4*, T67.5*) in the primary or secondary diagnostic code positions. For the purposes of this study, heat illness hospital admissions and outpatient encounters from 1 January 2016 through 31 December 2018 were extracted from the WRIR for Army active component and active and inactive National Guard and Reserve soldiers. Demographic characteristics were assigned according to the first encounter or admission during the analysis timeframe for each soldier.

Direct medical costs from the medical record and claims files were used to represent the cost of care paid for by the Military Health System (MHS). Variables for these costs have been included in the WRIR for each encounter since its implementation. For inpatient admissions to facilities owned and operated by the military, the direct cost of the care is captured in a variable identified as "full cost," which includes the cost of clinician salary, ancillary laboratory and radiology, ancillary salary, and intensive and surgical care units. For outpatient visits associated with these facilities, the direct cost of care captured in the same full cost variable includes clinician salary, professional salary, laboratory, radiology, pharmacy, ancillary, support, and other costs. For contracted care provided in civilian or network facilities, the direct medical cost represents the amount paid by TRICARE. This variable, tracked in the patient’s medical record, has been used to estimate the total cost of each medical encounter in other reports evaluating medical costs for soldiers in the MHS.

To determine the total direct medical cost, all hospital admission and outpatient encounter records with a heat exhaustion or heat stroke diagnosis meeting inclusion criteria were examined and the full cost and/or total amount paid for each heat illness encounter were summed by soldier and the date of care. Total direct medical care cost includes the cost of care associated with follow-up visits. The heat illness type was assigned based on the ICD-10 code in the primary or secondary position. The record was designated a heat stroke when either of the fields had a heat stroke diagnosis. Data were reported by clinical setting (outpatient and inpatient) and by heat illness type (heat exhaustion and heat stroke).

RESULTS

During the study period, 5,291 soldiers—1,027 (19.4%) females and 4,264 (80.6%) males—had 1 or more clinical records associated with heat stroke or heat exhaustion events (Table 1). The majority were enlisted soldiers (88.1%) and younger than 35 years old (90.8%). Of the soldiers who received care for a heat illness, 1 in 4 were members of the National Guard/Reserve.

The 5,291 soldiers had 13,087 records of encounters for heat illnesses that resulted in an average of 2.5 medical encounters per soldier (Table 2). The majority of the soldiers’ records indicated heat exhaustion diagnoses (69.3%), of which 98.0% were recorded during outpatient encounters. Similarly, 91.4% of heat stroke diagnoses were made during outpatient encounters. The number of heat stroke admissions was nearly double that of heat exhaustion; the number of hospital bed days associated with heat stroke admissions (786 bed days) was 3 times the number associated with heat exhaustion admissions (263 bed days) (data not shown).

The total direct care cost to the Army for heat stroke and heat exhaustion encounters was $7.3 million, or $559 per encounter. Even though approximately 70% of the medical encounters were related to heat exhaustion, cost was almost evenly divided between heat exhaustion and heat stroke encounters ($3.7 million and $3.6 million, respectively). The total cost of outpatient encounters was approximately 20% higher than the cost of inpatient admissions ($3.9 million and $3.3 million, respectively). An inpatient heat stroke encounter ($7,453/encounter) was more than 10-fold as costly as the aggregate cost per encounter ($559/encounter).
This analysis notes a total of 1,049 bed days (or lost duty days) due to heat illness diagnoses. Based on average soldier pay for the study timeframe and assuming the loss of 8 hours per day, these lost duty days total $356,000 in lost cost to the Army.

While data for medical profiles associated with heat illness were not available, the indirect costs of the lost and limited duty time associated with medical profiles have been estimated at almost 80% of the total cost of other injuries. If we assume this cost ratio for heat illness, indirect costs could reach $36 million. A future analysis should incorporate lost and/or limited duty heat illness profile data in order to provide a better estimate of the total cost of these conditions to the Army.

There were 2 main limitations to the study. The surveillance period for this report covered the period 1 January 2016 through 31 December 2018, so it is possible that some initial costs occurring before January 2016 and some follow-up and sequelae visits occurring after December 2018 were not accounted for in the full care cost for each heat illness event. Additionally, the cost assigned by the MHS to heat injury as a primary diagnosis reflects the intensity and complexity of care for other illnesses or injuries (e.g., gastroenteritis, stress fracture) that may be present at the time of the encounter.

Author affiliations: Armed Forces Health Surveillance Branch, Silver Spring, MD (Dr. Forrest, Dr. Maule, Ms. McCabe, Ms. Kebisek, Mr. Steelman, and Dr. Ambrose).

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency or the Department of Defense.

TABLE 2. Medical encounters and direct care costs associated with heat illness, U.S. Army, 2016–2018

<table>
<thead>
<tr>
<th>Heat illness</th>
<th>Care location</th>
<th>Total heat encounters</th>
<th>% total encounters</th>
<th>Total direct care cost</th>
<th>% total direct care cost</th>
<th>Per encounter cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any heat illness*</td>
<td>All</td>
<td>13,087</td>
<td>100.0</td>
<td>$7,321,719</td>
<td>100.0</td>
<td>$559</td>
</tr>
<tr>
<td>Heat exhaustion</td>
<td>All</td>
<td>9,074</td>
<td>69.3</td>
<td>$3,720,542</td>
<td>50.8</td>
<td>$410</td>
</tr>
<tr>
<td>Inpatient</td>
<td>186</td>
<td>2.0</td>
<td>$761,413</td>
<td>20.5</td>
<td>$4,094</td>
<td></td>
</tr>
<tr>
<td>Outpatient</td>
<td>8,888</td>
<td>98.0</td>
<td>$2,959,129</td>
<td>79.5</td>
<td>$333</td>
<td></td>
</tr>
<tr>
<td>Heat stroke</td>
<td>All</td>
<td>4,013</td>
<td>30.6</td>
<td>$3,601,177</td>
<td>49.2</td>
<td>$897</td>
</tr>
<tr>
<td>Inpatient</td>
<td>344</td>
<td>8.6</td>
<td>$2,563,740</td>
<td>71.2</td>
<td>$7,453</td>
<td></td>
</tr>
<tr>
<td>Outpatient</td>
<td>3,669</td>
<td>91.4</td>
<td>$1,037,436</td>
<td>28.8</td>
<td>$283</td>
<td></td>
</tr>
</tbody>
</table>

*Includes heat exhaustion and heat stroke.

REFERENCES

Limited data exist on animal-related injuries in the U.S. Army veterinary service (VS). The purpose of this study was to determine the incidence of animal-related injuries and the associated risk factors in VS personnel. A retrospective cohort study was conducted using military healthcare surveillance data on animal-related injuries in VS personnel from 2001–2018. Yearly incidence of medically diagnosed animal-related injuries ranged from 25–50 injuries per 1,000 person-years from 2001–2018. Linear regression showed no significant trend in the incidence rate per year over the study period ($R^2=0.005$). Bites were the most common injury (86.5%), with dog bites (44.3%) being the most common injury type and dogs the most common species implicated. After controlling for sex, age group, race/ethnicity group, and occupation, adjusted incidence rate ratios (AIRRs) showed significantly elevated risk for animal-related injuries among females compared to males (AIRR=1.69; 95% confidence interval [CI]: 1.45–1.99), soldiers aged 17–29 compared to those aged 30 years or older (AIRR=2.55; 95% CI: 2.12–3.08), and technicians compared to veterinarians (AIRR=1.57; 95% CI: 1.30–1.89). Unlike the majority of published literature on veterinary occupational health and safety, this study showed a clear increased risk of diagnoses of injury among females compared to males.

In the veterinary profession, animal bites and scratches can be frequent and their severity can range from requiring only basic first aid to necessitating hospitalization. Furthermore, these injuries have a high probability of causing secondary wound infections and/or long-term disabilities. It has been estimated that between 50%–67% of veterinarians and up to 98% of veterinary technicians have had an animal-related injury during their careers. Musculoskeletal diseases and other conditions secondary to or indirectly related to animal exposure and work are also common within the veterinary community. These exposures may include heavy lifting, repetitive motions, anesthetic gases, x-rays, needle stick injuries, and a variety of toxic pesticides and therapeutic agents.

For the purposes of this study, animal-related injuries were limited to those caused by mammalian species and do not include injuries from venomous reptiles or arthropods. The specific type of animal-related injury varies by frequency and risk, depending upon the predominant mammalian species with which a veterinary professional is working. Overall, the most dangerous animals to work around are cattle and horses. Injuries caused by these large mammalian
species account for the most human fatalities and are responsible for many serious crush and kick injuries.2,5 One survey-based study of members of the American Association of Swine Practitioners reported that needle stick injuries were the most common type of animal-related injury and that 22\% of swine practitioners reported having a diagnosis of hearing impairment.13 Small animal practitioners’ animal-related injuries are mostly confined to dog and cat bites and/or scratches. However, there is variability between studies on the prevalence and severity of dog vs. cat bites and/or scratches.1,7

VS personnel have the most experience and are the subject matter experts in animal handling and animal-related safety for the DoD. To maintain their expertise in this field, and in order to train others on safe animal handling practices, the VS needs to ensure that their methods are as safe and effective as possible. Increasing the overall readiness of VS soldiers requires a targeted training approach for risk mitigation of animal-related injuries. Determining the most at-risk members of the VS population could inform the development, refinement, and targeted implementation of prevention strategies to further reduce animal-related injuries within the VS.

The purpose of this study was to determine the incidence of medically documented animal-related injuries among active component VS personnel from 2001 through 2018 and the associated risk factors. Based on a review of the published literature and experience in the VS, it was hypothesized that young age, male sex, and occupation as a technician would be associated with an increased risk for animal-related injuries within this population.

METHODS

This report describes a retrospective cohort study of active component VS soldiers and VCOs from 1 January 2001 through 31 December 2018. Deidentified demographic and medical encounter data were provided by the Armed Forces Health Surveillance Branch of the Defense Health Agency. Institutional Review Board (IRB) approval was obtained from the Uniformed Services University IRB. Service members with U.S. Army military occupational specialty (MOS) codes 91T and 68T (animal care specialists, hereafter referred to as technicians) and all 64 series (64A, 64B, 64C, 64D, 64E, 64F, 64Z, hereafter referred to as veterinarians) constituted the population of interest.

Animal-related injury events (cases) were identified from inpatient and outpatient encounter data among garrison-stationed VS personnel and did not include deployed or in-theater cases. Each active component VS member with a medical encounter that included a diagnostic code indicative of an animal-related injury (i.e., nonvenomous mammal bite, scratch, or other nonvenomous mammalian-related injury type) in any diagnostic position within the described surveillance period was defined as a case. Case-defining codes included International Classification of Diseases, 9th Revision (ICD-9) codes E096.0, E096.1, E096.3, E096.5, E096.8, and E096.9 and International Classification of Diseases, 10th Revision (ICD-10) codes W53.* , W54.*, and W55.*.

After a diagnosis met the definition of a case, any subsequent diagnosis of an animal-related injury was not counted as an incident case unless at least 90 days had passed since the prior diagnosis with the same animal-related injury–defined ICD code or the subsequent ICD code was different from the prior animal-related injury ICD code. This criterion reduced the likelihood of double counting cases who were receiving follow-up care for the original injury. Person-time sums for the populations of technicians and veterinarians during the study period were calculated overall, by year, and by demographic variables. The demographic variables describing each member of the cohort were the following: MOS (91T/68T or 64 series), age group (17–19, 20–29, 30–39, and 40+ years), sex (male or female), and race/ethnicity group (non-Hispanic white, non-Hispanic black, Hispanic, Asian/Pacific Islander, American Indian/Alaska Native, and other/unknown), and rank/grade (junior enlisted [E1–E4], senior enlisted [E5–E9], junior officer [O3–O4], and senior officer [O5–O10]).

Grade/rank was not included as a variable for calculating risk because the definitions of the rank categories are not appropriate to the ranks of VCOs. Because of relatively small cell sizes in the youngest and the oldest age groups, combined age groups of 17–29 years and 30 years or older were created. Similarly, the “non-Hispanic black” and “other/unknown” race/ethnicity groups were combined to allow for comparison to the non-Hispanic white group. This simplification allowed for a binomial assessment of all demographic parameters (i.e., male vs. female, veterinarian vs. technician, old vs. young, and white vs. non-white).

Descriptive statistics were used to analyze the incidence rates of animal-related injuries according to the demographic variables within the populations of technicians and veterinarians. Animal bites with ICD-9 codes that were not indicative of a dog or rat (ICD-9: E906.3 and E906.5) or with ICD-10 codes that were not indicative of a dog, rat, cat, horse, cow, hoof stock, pig, or raccoon (ICD-10: 55.81*) were classified as “other.” Each type of animal-related injury was totaled by species and injury type to the highest specificity allowed by ICD coding. Injury counts by type and species were presented as totals and percentages of all injuries in the cohort during 2001–2018. Yearly incidence rates for the study period were calculated by dividing the total number of incident cases for each year by the sum of p-yrs for that year. Incidence rates were calculated as incident animal-related injury diagnoses per 1,000 p-yrs. The linear trendline function in Microsoft Excel for Office 365 was used to assess the fit (R^2) of a regression line to the annual incidence rates over time (2018, Microsoft Corporation, Redmond, WA).

Multivariable Poisson regression models were used to calculate adjusted incidence rate ratios (AIRRs) and 95\% confidence intervals (CIs) controlling for sex, combined age group, combined race/ethnicity group, and occupation. Statistical significance was defined as $p < .05$. With the exception of the simple trendline assessment, statistical analyses were carried out using Stata/IC, version 15 (2015, StataCorp LLC, College Station, TX).

RESULTS

A total of 772 incident animal-related injury diagnoses were ascertained among VS personnel from 2001 through 2018, resulting in an overall incidence rate of 37.7 per 1,000 p-yrs (Table 1). The subgroup with the highest crude incidence rate was technicians aged 17–19 years, at 91.8 injuries per 1,000 p-yrs. During the surveillance period, approximately 43 incident animal-related injuries...
were diagnosed per year among VS personnel, with the lowest counts of injuries in 2001 (n=26) and the highest in 2017 (n=58) (Figure 1). Examination of crude incidence rates of animal-related injury diagnoses over time showed no linear trend ($R^2=0.005$); annual rates fluctuated between 50.1 per 1,000 p-yrs in 2013 and 24.4 per 1,000 p-yrs in 2018 (data not shown). Compared to their respective counterparts, technicians, females, those in younger age groups, non-Hispanic white VS personnel, and junior enlisted soldiers had the highest crude rates for animal-related injuries (Table 1).

Of all injuries counted, 668 (86.5%) were bites from a variety of species (Table 2, Figure 2). Of all the animal-related injuries, dog bites were the single most common type, with a total of 342 (44.3%). “Other” bites accounted for 34.7% (n=268) of the total. Only 11 recorded injuries were caused by large-bodied mammal species. Of the 772 total injuries, 553 (71.6%) were sustained by veterinary technicians, while only 219 (28.4%) were sustained by veterinarians. The majority of animal-related injuries were among females (n=515; 66.7%) (Table 1). Of the technicians’ injuries, 435 (78.7%) were in junior enlisted soldiers, and of the veterinarians’ injuries, 214 (97.7%) were in junior officers. More than three-quarters (78.1%) of the animal-related injuries were among non-Hispanic white soldiers.

Unadjusted IRRs revealed a more than 2-fold increased risk in sustaining a diagnosis of an animal-related injury for females vs. males (IRR=2.17; 95% CI: 1.87–2.52), technicians vs. veterinarians (IRR=2.52; 95% CI: 2.15–2.94), and those 17–29 years old vs. those 30+ years old (IRR=3.54; 95% CI: 3.03–4.13) (Table 3). After adjustment for sex, age, race/ethnicity, and occupation, these differences in rates remained statistically significant. Even after combining minority race/ethnicity categories, non-Hispanic white soldiers showed a 56% increased incidence of animal-related injury compared with the combined non-Hispanic black/other/unknown group in the adjusted model (AIRR=1.56; 95% CI: 1.31–1.86) (Table 3).

The results of this study indicate that technicians, females, and younger soldiers were at a higher risk of sustaining an animal-related injury when compared to veterinarians, males, and older soldiers, respectively. Even in the adjusted analysis, there was at least a 50% increase in risk for younger individuals, technicians, and females when compared to older individuals, veterinarians, and males, respectively (Table 3). The explanation for the increased risk observed in females compared to males is not immediately apparent. In VS clinical operations, males are frequently selected for riskier tasks involving

Table 1. Animal-related injury cases, by demographic and military characteristics, U.S. Army VS personnel, 2001–2018

| | No. injuries\(^a\) | P-yrs\(^b\) | Incidence rate
d|---|---|---|---|---|---|
Total	772	553	219	10,196.4	10,280.7	54.2	21.3
Sex							
Male	257	200	57	4,896.3	5,742.8	40.8	9.9
Female	515	353	162	5,300.1	4,538.0	66.6	35.7
Age group (years)							
17–19	95	95	---	1,034.7	---	91.8	---
20–29	453	358	95	5,892.0	1,444.1	60.8	65.8
30–39	169	86	83	2,724.4	4,288.6	31.6	19.4
40+	55	14	41	545.3	4,548.0	25.7	9.0
Race/ethnicity group							
Non-Hispanic white	603	412	191	6,447.5	8,403.5	63.9	22.7
Non-Hispanic black	53	47	6	1,709.2	571.3	27.5	10.5
Other/unknown	116	94	22	2,039.8	1,306.0	46.1	16.8
Rank/grade							
Junior enlisted (E1–E4)	435	435	---	5,771.5	---	75.4	---
Senior enlisted (E5–E9)	118	118	---	4,425.0	---	26.7	---
Junior officer (O1–O5)	214	214	---	9,603.2	---	22.3	
Senior officer (O6–O10)	5	5	---	677.5	---	7.4	

\(^a\)Counts are for animal-related injuries in technicians and veterinarians by demographic variable.

\(^b\)Counts are for the total person-time as p-yrs for the cohort over the entire study period of 2001–2018 by demographic variable.

\(^c\)Rate per 1,000 p-yrs.

VS, veterinary service; No., number; P-yrs, person-years.
the handling of aggressive animals because of physical stature or strength. Furthermore, the “white male effect” has been previously described in risk perception literature, showing that white males tend to perceive less risk than women and minorities.\(^{14}\) If the perception of risk is higher in females than in males in the VS cohort described here, it was not reflected in a decreased rate of animal-related injuries for females. An additional potential explanation for the increased risk of injury to female compared to male VS personnel may be related to differences in their healthcare-seeking behavior. Health behavior literature cites that females are more likely to utilize healthcare services than males, and it is possible that the increased incidence of injuries in females is a reporting bias due to their increase in healthcare seeking behavior.\(^{15}\)

One survey of Canadian veterinarians showed an increase in the odds of injury for females compared to males.\(^{16}\) However, in an Australian veterinary injury study, Lucas and colleagues found that even with the increase in female veterinarians in the profession, a larger percentage of animal-related injuries was found in males.\(^{2}\) To date, a literature search has not found a study describing the relationship of sex with animal-related injuries among veterinary technicians. Nordgren and colleagues\(^{6}\) discussed work-related risk factors for animal-related injuries in certified veterinary technicians. However, they were unable to include sex in their statistical models because 97% of the study participants were female.

An increased risk for technicians to sustain an injury in the VS is conceivable, as technicians work with many more animals and would have more animal contact than a veterinarian. An increased risk of an
animal-related injury for technicians when compared to veterinarians is well documented in the published literature.1,3,4

Several previous studies have shown that younger age increases the risk of sustaining an animal-related injury.6,8,9,12 Regarding the increased rate of animal-related injuries in younger service members, this finding could be related to experience and work type. Junior enlisted soldiers and junior officers generally have more direct animal contact than their superiors. The frequency of animal contacts decreases dramatically as a VS soldier increases in rank (and consequently age), and the chance of injury is simply decreased as a result. Furthermore, those who have served in their career field longer may be less likely to suffer injuries or to seek medical care for injuries because they perceive them as minor. Moreover, junior soldiers might be directed or required to seek care for an injury by their superiors, whereas a more senior soldier may be able to more readily decline medical attention.

Previous research has described the type of animal-related injury by species and veterinary practice type.4,5,7,10,13 VS clinical operations can be described as a mostly “small animal practice” for civilian veterinary clinic comparisons. In the civilian population, Fowler and colleagues4 found that cats were the most likely species to cause an injury in small animal practice.4,6 However, other studies have found that the highest incidence of animal-related injuries in small animal clinics is attributable to dogs.2,16 The number of cat-related injuries in the VS cohort during 2001–2018 was 55 (48 bites and 7 scratches). Unfortunately, the granularity of ICD-9 codes were unable to indicate cats as a species type. The incident cases of cat-related injuries counted in this study were counted from 2015–2018, following the introduction of ICD-10 coding into the Military Health System. As a result, many “other” bites from before 2015 may have been cat bites that were not identifiable as such.

The present study had a very specific population definition that is demographically unique compared to civilian small animal veterinary clinics. The uniqueness of this population makes it difficult to generalize the results and make statistical comparisons to other cohort, case control, or cross-sectional studies regarding animal-related injuries in veterinary professionals. The most significant differences between this study and published

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{Percentages and counts of animal-related injuries, by type, U.S. Army VS personnel, 2001–2018}
\end{figure}

\begin{table}
\centering
\caption{IRRs of animal-related injuries, U.S. Army VS personnel, 2001–2018}
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline
Demographic characteristics & Ratea & IRR & 95\% CI & p-value & AIRRb & 95\% CI & p-value \\
\hline
\textbf{Sex} & & & & & & & \\
Female & 52.3 & 2.17 & 1.87–2.52 & <.001 & 1.69 & 1.45–1.99 & <.001 \\
Male & 24.2 & ref & . & . & ref & . & . \\
\hline
\textbf{Age group (years)} & & & & & & & \\
17–29 & 65.5 & 3.54 & 3.03–4.13 & <.001 & 2.55 & 2.12–3.08 & <.001 \\
30+ & 18.5 & ref & . & . & ref & . & . \\
\hline
\textbf{Race/ethnicity group} & & & & & & & \\
Non-Hispanic white & 40.6 & 1.35 & 1.14–1.60 & <.001 & 1.56 & 1.31–1.86 & <.001 \\
Non-Hispanic black/other/unknown & 30.0 & ref & . & . & ref & . & . \\
\hline
\textbf{Military occupation} & & & & & & & \\
Technician & 54.2 & 2.52 & 2.15–2.94 & <.001 & 1.57 & 1.30–1.89 & <.001 \\
Veterinarian & 21.3 & ref & . & . & ref & . & . \\
\hline
\end{tabular}
aRate per 1,000 person-years.
bControlling for sex, combined age group, race/ethnicity group, and occupation.

IRR, incidence rate ratio; VS, veterinary service; CI, confidence interval; AIRR, adjusted incidence rate ratio.
The present study showed that there is an increased risk for diagnosed animal-related injury in females compared to males, young soldiers compared to older, and technicians compared to veterinarians in the VS population. VS leadership should utilize these data to ensure that there are no gender disparities in the training programs for animal care specialists (MOS 68T). Furthermore, leadership should ensure that there are no disparities in the duty assignments of female VS personnel or in the onsite training and task management of new female technicians. Additional research needs to be completed, along with task-specific and MOS-specific military injury data, in order to determine if changes need to be made for the entry requirements of the 68T MOS. Commanders and VCOs should utilize this information to ensure that their technicians, especially young female service members, utilize the appropriate personal protective measures and follow all safety protocols and standard operating procedures in order to mitigate animal-related injury risk.

Acknowledgments: The authors would like to thank Ms. Sorana Raičiulescu and MAJ Craig Calkins for their masterful spreadsheet and statistical support, without which this project would certainly not have been possible.

Author affiliations: U.S. Army Medical Research Institute of Chemical Defense, Veterinary Medicine and Surgery Department (MAJ Messenger); Armed Forces Health Surveillance Branch (Dr. Stahlman); Fort Drum Army Medical Department Activity Chief of Preventive Medicine, Uniformed Services University of the Health Sciences, Department of Preventive Medicine and Biostatistics, Assistant Professor (MAJ Chern).

Disclaimer: The contents of this publication are the sole responsibility of the authors and do not necessarily reflect the views, opinions, or policies of Uniformed Services University of the Health Sciences, the Department of Defense, or the Departments of the Army, Navy, or Air Force. Mention of trade names, commercial products, or organizations does not imply endorsement by the U.S. Government.
MEDICAL SURVEILLANCE MONTHLY REPORT (MSMR), in continuous publication since 1995, is produced by the Armed Forces Health Surveillance Branch (AFHSB). AFHSB is a designated public health authority within the Defense Health Agency. The MSMR provides evidence-based estimates of the incidence, distribution, impact, and trends of illness and injuries among U.S. military members and associated populations. Most reports in the MSMR are based on summaries of medical administrative data that are routinely provided to the AFHSB and integrated into the Defense Medical Surveillance System for health surveillance purposes.

Archive: Past issues of the MSMR are available as downloadable PDF files at www.health.mil/MSMRArchives.

Editorial Inquiries: Call (301) 319-3240 or email dha.ncr.health-surv.mbx.msmr@mail.mil.

Instructions for Authors: Information about article submissions is provided at www.health.mil/MSMRInstructions.

All material in the MSMR is in the public domain and may be used and reprinted without permission. Citation formats are available at www.health.mil/MSMR.

Opinions and assertions expressed in the MSMR should not be construed as reflecting official views, policies, or positions of the Department of Defense or the United States Government.

Follow us:
www.facebook.com/AFHSBPAGE
http://twitter.com/AFHSBPAGE

ISSN 2158-0111 (print)
ISSN 2152-8217 (online)