Skip to main content

Military Health System

Brief Report: Prevalence of Screening Positive for Post-Traumatic Stress Disorder Among Service Members Following Combat-Related Injury

Image of Two army men standing next to a military vehicle. U.S. Army Sgt. Arne F. Eastlund of the California Army National Guard’s 49th Military Police Brigade was nearly killed in 2005 in Baghdad, Iraq, during Operation Iraqi Freedom. An improvised explosive device destroyed his military vehicle and killed comrade Sgt. 1st Class Isaac S. Lawson. Eastlund survived and has continued serving Cal Guard even as a retired war veteran. (U.S. Army National Guard photo provided by Arne Eastlund)

Recommended Content:

Medical Surveillance Monthly Report

Background

The post-9/11 conflicts in Iraq and Afghanistan resulted in the most U.S. military casualties since Vietnam.1 Asymmetric warfare dominated the battlefield, commonly in the form of improvised explosive devices and other blast weaponry, which placed infantry and combat support personnel at risk of injury.2 As casualty numbers increased during these conflicts, so too did the survivability rate relative to previous wars, most notably due to advances in personal protective equipment and field medical care.3 This led to a shift in resources towards long-term rehabilitation of wounded service members to ameliorate physical and mental health sequelae.2,4

Post-traumatic stress disorder (PTSD) is frequently reported among military personnel, particularly those with combat-related injury.5,6 Koren et al.5 hypothesized multiple etiologies for the relationship between combat-related injury and PTSD, including increased levels of perceived threat to life and peritraumatic dissociation (i.e., feeling emotionally numb or separated from a traumatic event) among injured relative to non-injured personnel. An increased incidence of PTSD is associated with physical problems and chronic health conditions after combat-related injury.7,8 Moreover, assessment of PTSD following combat-related injury is essential for planning appropriate treatment protocols and improving long-term well-being.4,9

This report describes the prevalence of screening positive for PTSD and the association with injury severity and time since injury among U.S. military personnel injured during combat operations.

Methods

Data were collected from the Wounded Warrior Recovery Project (WWRP), a longitudinal examination of patient-reported outcomes among service members injured on deployment in post-9/11 conflicts.10 Participants in the WWRP are identified from the Expeditionary Medical Encounter Database (EMED), a deployment health repository maintained by the Naval Health Research Center that includes clinical records of service members injured during overseas contingency operations since 2001. Records are collected throughout the continuum of care (i.e., from point of injury through rehabilitation).11 Individuals who sustained an injury during combat operations after 1 September 2001 are eligible for the WWRP and approached via postal mail and email to provide informed consent to complete biannual assessments for 15 years. Recruitment for the WWRP began in November 2012 and is ongoing.

The present study utilized cross-sectional data for 3,847 WWRP participants collected between September 2018 and April 2020. WWRP measures and procedures were updated in late 2018 to remain consistent with current standards of measurement. Specifically, the PTSD screening instrument was updated to the PTSD Checklist for the DSM-5 (PCL-5).12 The PCL-5 shows good psychometric properties and has been used with military samples.13,14 Scores on the PCL-5 were summed to create a total symptom severity score. A standard cutoff of 33 indicated a positive screen for PTSD. Injury dates, Injury Severity Scores (ISS), and demographics for this study were obtained from the EMED. The ISS is a composite measure of overall injury severity that accounts for multiple injuries to different body regions.15 Prevalence of screening positive for PTSD was calculated and stratified by ISS (mild [ISS 1–3], moderate [ISS 4–8], or serious/severe [ISS 9+]) and time between injury and WWRP assessment in quartiles (0.4–7.3, 7.4–10.7, 10.8–13.0, or 13.1–17.8 years). Chi-square tests assessed differences by PTSD screening status. An alpha level of 0.05 was considered statistically significant. Analyses were performed in SAS/STAT software, version 9.4 (SAS Institute, Cary, NC).

Results

The study population consisted mostly of young (<30 years old), non-Hispanic White, and male service members in the Army with mild ISSs (Table). Missing data were observed for sex (n = 4), race/ethnicity group (n = 325), and rank (n = 21). Approximately half completed a WWRP assessment more than 10.8 years after injury, and 38.7% screened positive for PTSD. Service members who screened positive for PTSD were more likely to be non-White (p <.001), non-Army (p <.001), and lower- to midlevel-enlisted (E1–E6; p <.001) with mild or moderate ISSs (p =.001).

Overall, the proportions of service members who screened positive for PTSD increased by time since injury quartile (Figure); 35.9% of participants who completed an assessment 0.4–7.3 years after injury screened positive for PTSD, compared with 41.4% who completed the assessment 13.1–17.8 years after injury. Participants with serious/severe injuries had the lowest prevalence of screening positive for PTSD in all time since injury quartiles (30.8–38.0%), while those with moderate injuries had the highest prevalence in the final 2 quartiles (44.5%).

Editorial Comment

Approximately 39% of WWRP participants screened positive for PTSD, which is higher than the 28% identified in a previous study using the same instrument among military personnel with high combat exposure.14 Another study among Marines and Soldiers returning from deployment identified 12–13% PTSD positive using a 4-item PTSD screening instrument.16 In the present study, all service members had at least 1 potentially traumatic event (i.e., combat-related injury), which could explain the higher prevalence of participants who screened positive for PTSD relative to other studies.

The finding of increasing prevalence by time since injury suggests that PTSD may develop or persist several years after combat-related injury, and underscores the need for continual assessment. The higher prevalence of screening positive for PTSD in participants with mild or moderate combat-related injuries suggests that PTSD symptoms in these individuals may not have been as promptly or readily identified and treated as in those with serious/severe injuries. Further, service members with serious/severe injuries likely received more extensive care for physical ailments and may have been regularly assessed for mental health symptoms leading to earlier identification, treatment, and resolution. Other aspects of serious/severe combat-related injuries, such as medications received during treatment in-theater, could also explain lower PTSD prevalence in this group.17

The results of this study highlight the importance of screening for PTSD after combat-related injury even after long periods of time. Both the Post-Deployment Health Assessment and Periodic Health Assessment should continue to be used to identify and refer individuals at risk for PTSD. Given that service members may be averse to reporting mental health symptoms due to non-anonymity of these assessments,18 programs aimed at reducing the stigma associated with mental health care in the military should be prioritized.19 In addition, medical providers who treat combat-related injuries should routinely screen service members for mental health concerns, as individuals presenting for physical health complaints may be simultaneously experiencing psychological symptoms.20

There are some limitations that should be considered when interpreting the results of this study. This analysis examined time since injury in mutually exclusive groups, rather than repeated measures within individuals, and thus trajectory of PTSD over time could not be elucidated. Similarly, the WWRP does not collect information related to history of PTSD prior to injury. Further, the specific role of injury on the development of PTSD cannot be clarified without a detailed accounting of other factors (e.g., physical health, comorbidities, and life stressors) following combat-related injury.

In conclusion, service members and veterans with combat-related injuries are at risk of screening positive for PTSD even more than a decade after injury. This warrants future research to explore the role of injury severity and factors associated with resiliency, persistence, and recovery. Resources should be prioritized for early intervention and mitigation in this population during active service and post-military discharge.

Author Affiliations: Naval Health Research Center, San Diego, CA (Dr. MacGregor, Ms. Perez, Dr. McCabe, Ms. Dougherty, Dr. Jurick, and Mr. Galarneau); Axiom Resource Management Inc., San Diego, CA (Dr. MacGregor); Leidos, Inc., San Diego, CA (Ms. Perez, Dr. McCabe, Ms. Dougherty, Dr. Jurick)

Disclaimer: The authors are military service members or employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person's official duties. This report was supported by the U.S. Navy Bureau of Medicine and Surgery under work unit no. 60808. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, nor the U.S. Government. The study protocol was approved by the Naval Health Research Center Institutional Review Board in compliance with all applicable Federal regulations governing the protection of human subjects. Research data were derived from an approved Naval Health Research Center Institutional Review Board protocol, number NHRC.2009.0014.

References

  1. DeBruyne NF, Leland A; Congressional Research Service. American war and military operations casualties: lists and statistics. Accessed 1 June 2021. https://fas.org/sgp/crs/natsec/RL32492.pdf
  2. Greer N, Sayer N, Kramer M, Koeller E, Velasquez T. Prevalence and epidemiology of combat blast injuries from the military cohort 2001–2014. Washington, DC: Department of Veterans Affairs; 2016.
  3. Cannon JW, Holena DN, Geng Z, et al. Comprehensive analysis of combat casualty outcomes in US service members from the beginning of World War II to the end of Operation Enduring Freedom. J Trauma Acute Care Surg. 2020;89(Suppl 2):S8–S15.
  4. Sayer NA, Cifu DX, McNamee S, et al. Rehabilitation needs of combat-injured service members admitted to the VA Polytrauma Rehabilitation Centers: the role of PM&R in the care of wounded warriors. PM R. 2009;1(1):23–28.
  5. Koren D, Norman D, Cohen A, Berman J, Klein EM. Increased PTSD risk with combat-related injury: a matched comparison study of injured and uninjured soldiers experiencing the same combat events. Am J Psychiatry. 2005;162(2):276–282.
  6. Walker LE, Watrous J, Poltavskiy E, et al. Longitudinal mental health outcomes of combat-injured service members. Brain Behav. 2021;11(5):e02088.
  7. Grieger TA, Cozza SJ, Ursano RJ, et al. Posttraumatic stress disorder and depression in battle-injured soldiers. Am J Psychiatry. 2006;163(10):1777–1783.
  8. Watrous JR, McCabe CT, Jones G, et al. Low back pain, mental health symptoms, and quality of life among injured service members. Health Psychol. 2020;39(7):549–557.
  9. Woodruff SI, Galarneau MR, McCabe CT, Sack DI, Clouser MC. Health-related quality of life among US military personnel injured in combat: findings from the Wounded Warrior Recovery Project. Qual Life Res. 2018;27(5):1393–1402.
  10. Watrous JR, Dougherty AL, McCabe CT, Sack DI, Galarneau MR. The Wounded Warrior Recovery Project: a longitudinal examination of patient-reported outcomes among deployment-injured military personnel. Mil Med. 2019;184(3–4):84–89.
  11. Galarneau MR, Hancock WC, Konoske P, et al. The Navy-Marine Corps Combat Trauma Registry. Mil Med. 2006;171(8):691–697.
  12. Weathers FW, Litz BT, Keane TM, Palmieri PA, Marx BP, Schnurr PP. The PTSD Checklist for DSM-5 (PCL-5) – Standard [Measurement instrument]. National Center for PTSD Web site. Accessed 1 June 2021. https://www.ptsd.va.gov/professional/assessment/documents/PCL5_Standard_form.PDF
  13. Blevins CA, Weathers FW, Davis MT, Witte TK, Domino JL. The posttraumatic stress disorder checklist for DSM-5 (PCL-5): development and initial psychometric evaluation. J Trauma Stress. 2015;28(6):489–498.
  14. Hoge CW, Riviere LA, Wilk JE, Herrell RK, Weathers FW. The prevalence of post-traumatic stress disorder (PTSD) in US combat soldiers: a head-to-head comparison of DSM-5 versus DSM-IV-TR symptom criteria with the PTSD checklist. Lancet Psychiatry. 2014;1(4):269–277.
  15. Baker SP, O'Neill B, Haddon W Jr, Long WB. The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. J Trauma. 1974;14:187–96.
  16. Mustillo SA, Kysar-Moon A, Douglas SR, et al. Overview of depression, post-traumatic stress disorder, and alcohol misuse among active duty service members returning from Iraq and Afghanistan, self-report and diagnosis. Mil Med. 2015;180(4):419–27.
  17. Holbrook TL, Galarneau MR, Dye JL, Quinn K, Dougherty AL. Morphine use after combat injury in Iraq and post-traumatic stress disorder. N Engl J Med. 2010;362(2):110–117.
  18. Warner CH, Appenzeller GN, Grieger T, et al. Importance of anonymity to encourage honest reporting in mental health screening after combat deployment. Arch Gen Psychiatry. 2011;68(10):1065–1071.
  19. Ben-Zeev D, Corrigan PW, Britt TW, Langford L. Stigma of mental illness and service use in the military. J Ment Health. 2012;21(3):264–273.
  20. MacGregor AJ, Zouris JM, Watrous JR, et al. Multimorbidity and quality of life after blast-related injury among US military personnel: a cluster analysis of retrospective data. BMC Public Health. 2020;20(1):578.

FIGURE. Prevalence of screening positive for post-traumatic stress disorder (PTSD)a by Injury Severity Score (ISS) and time since injury, Wounded Warrior Recovery Project participants, September 2018–April 2020

TABLE. Demographic, military, and injury characteristics of Wounded Warrior Recovery Project participants, by post-traumatic stress disorder (PTSD) screening outcome,a September 2018–April 2020

You also may be interested in...

MSMR Vol. 29 No. 10 - October 2022

Report
10/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Viral hepatitis C, active component, U.S. Armed Forces, 2011–2020

Article
10/1/2022
The Armed Services Blood Program (ASBP) is the official blood program of the U.S. military. It is a joint operation that collects, tests, stores, transports and distributes blood products to military locations around the world, wherever and whenever it’s needed most.

This study reports updated numbers and incidence rates of hepatitis C virus (HCV) infection among active component members of the U.S. military using a revised case definition during a 10-year surveillance period between 2011 and 2020.

Recommended Content:

Medical Surveillance Monthly Report

Update: Contraception Among Active Component Service Women, U.S. Armed Forces, 2017–2021

Article
10/1/2022
JOINT BASE SAN ANTONIO-FORT SAM HOUSTON, Texas (Oct. 20, 2021) -- Brooke Army Medical Center now offers female service members a walk-in clinic for contraception on Wednesdays from noon to 2 p.m. in the Adolescent and Young Adult Medicine Clinic at the CPT Jennifer M. Moreno Clinic.

This report summarizes the annual prevalence of permanent sterilization, as well as use of long- and short-acting reversible contraceptives (LARCs and SARCs, respectively), contraceptive counseling services, and use of emergency contraceptives from 2017 through 2021 among active component U.S. service women.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2017–April 2022

Article
10/1/2022
Carl R. Darnall Army Medical Center, Fort Hood, Texas, Capt Claireisa Spencer prepares to administer a flu vaccine to a Fort Hood Army Exchange customer during CRDAMC’s celebration of National Influenza Vaccination Week.

Immunization Among U.S. Armed Forces Healthcare Workers

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 09 - September 2022

Report
9/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, U.S. Armed Forces, Active and Reserve Components, January 2017–June 2022

Article
9/1/2022
NAVAL MEDICAL CENTER CAMP LEJEUNE, North Carolina - As the leading petty officer for Naval Medical Center Camp Lejeune's Community Health Clinic, HM2 Kameron Jacobs is part of the first satellite team to treat service members living with HIV.

This report provides an update through June 2022 of routine screening results for antibodies to the human immunodeficiency virus (HIV) among members of the active and reserve components of the U.S. Armed Forces. During the full 5 and 1/2-year surveillance period, the HIV seropositivity rates for active component service members were 0.21 positives per 1,000 members of the Army, 0.24 for the Navy, 0.16 for the Marine Corps, and 0.14 for the Air Force.

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of the MSMR Surveillance Case Definition for Incident Cases of Hepatitis C

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Angel Alvarado, a combat graphics specialist, donates blood for the Armed Services Blood Program (ASBP).

The validity of military hepatitis C virus (HCV) surveillance data is uncertain due to the potential for misclassification introduced when using administrative databases for surveillance purposes. The objectives of this study were to assess the validity of the surveillance case definition used by the Medical Surveillance Monthly Report (MSMR) for HCV, the over and underestimation of cases from surveillance data, and the true burden of HCV disease in the U.S. military.

Recommended Content:

Medical Surveillance Monthly Report

Letter to the Editor: Clarification of Hepatitis C Virus Screening with Case Definitions and Prevalence Among Trainees

Article
9/1/2022
ALBANY, Ga. (May 11, 2022) - Hospital Corpsman 2nd Class Leeanna Grzemski, a lab technician at Naval Branch Health Clinic Albany, takes a blood sample. Grzemski, a native of Weatherford, Texas, says, “Best part of my job is meeting and interacting with our patients.” (U.S. Navy photo by Deidre Smith, Naval Hospital Jacksonville/Released).

We read with interest the brief report regarding the prevalence of Hepatitis C Virus (HCV) infection in basic military trainee blood donors by Kasper and colleagues in the November 2021 issue of the Medical Surveillance Monthly Report (MSMR),1 an update of a previous similar report

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Menstrual Suppression Among U.S. Female Service Members in the Millennium Cohort Study

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Bobby Brodeur, a Gilford, New Hampshire, native and machine gunner with 3rd Battalion, 6th Marine Regiment, 2d Marine Division, conducts gun drills at Camp Lejeune, North Carolina, Oct. 13, 2022. Brodeur is currently serving as a machine gunner with 3/6 and is one of three female infantry Marines in Kilo Co. She has demonstrated an unwavering commitment to 3/6 through her high physical fitness scores and leading by example within the platoon. (U.S. Marine Corps photo by Lance Cpl. Megan Ozaki)

Menstrual suppression allows for the control or complete suppression of menstrual periods through hormonal contraceptive methods. In addition to preventing pregnancy, suppression can alleviate medical conditions and symptoms associated with menstruation such as iron deficiency anemia,1 eliminate logistical hygiene-related challenges, and improve quality of life.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 08 - August 2022

Report
8/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Medical Surveillance Monthly Report

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

Article
8/1/2022
U.S. Air Force Capt. Hopkins, 351st Special Warfare Training Squadron, Instructor Flight commander and Chief Combat Rescue Officer (CRO) instructor, conducts a military free fall equipment jump from a DHC-4 Caribou aircraft in Coolidge, Arizona, July 17, 2021. Hopkins is recognized as the 2020 USAF Special Warfare Instructor Company Grade Officer of the Year for his outstanding achievement from January 1 to December 31, 2020.

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and resources for the Department of Defense.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

Article
8/1/2022
U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including physical, psychologi­cal, and neurological issues.

Recommended Content:

Medical Surveillance Monthly Report

Prevalence and Distribution of Refractive Errors Among Members of the U.S. Armed Forces and the U.S. Coast Guard, 2019.

Article
8/1/2022
Ophthamologist Air Force Maj. Thuy Tran evaluates a patient during an eye exam. (U.S. Air Force photo by Tech. Sgt. John Hughel)

During calendar year 2019, the estimated prevalence of myopia, hyperopia, and astigmatism were 17.5%, 2.1%, and 11.2% in the active component of the U.S. Armed Forces and 10.1%, 1.2%, and 6.1% of the U.S. Coast Guard, respectively.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Article
7/1/2022
Dr. Peter Larson loads an Oxford Nanopore MinION sequencer in support of COVID-19 sequencing assay development at the U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. (Photo by John Braun Jr., USAMRIID.)

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System (MHS) beneficiaries from 1 March to 31 December 2020.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14
Refine your search
Last Updated: October 05, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery