Skip to main content

Military Health System

Test of Sitewide Banner

This is a test of the sitewide banner capability. In the case of an emergency, site visitors would be able to visit the news page for addition information.

Brief Report: Prevalence of Hepatitis C Virus Infections in U.S. Air Force Basic Military Trainees Who Donated Blood, 2017–2020

Image of 2_HCVblood donors. U.S. Army Staff Sgt. Brandon Sousa, 424th Engineer Vertical Construction Company, donates blood to the 379th Expeditionary Medical Group’s Blood Support Center, Aug. 30, 2021, at Al Udeid Air Base, Qatar. The blood support center conducted a walking blood bank to collect blood from prescreened and cleared donors. The blood was sent downrange to support Afghanistan evacuation operations. The DoD is committed to supporting the U.S. State Department in the departure of U.S. and allied civilian personnel from Afghanistan, and to evacuate Afghan allies to safety. (U.S. Air Force photo by Senior Airman Kylie Barrow)

Background

Chronic infection with hepatitis C virus (HCV) can cause significant morbidity to individuals due to inflammatory damage to the liver. This chronic inflammatory damage can lead to further complications, including cirrhosis, hepatocellular carcinoma, and fulminant liver failure. In the military, HCV presents a concern for fitness for duty, readiness, and health care costs of its members.

In the U.S., prevalence of chronic HCV infection is approximately 1%.1 From 2010–2019, estimated annual acute HCV incidence increased 387%2; increased detection was driven at least in part by improved and expanded testing recommendations as well as increased injection drug use within the opioid abuse epidemic.3,4 During this timeframe, the majority of new HCV infections occurred in those aged 20–39 (which approximates the ages of those joining the military).2

In 2020, the American Association for the Study of Liver Diseases (AASLD),5 U.S. Preventive Services Task Force (USPSTF),6 and Centers for Disease Control and Prevention (CDC)7 expanded recommendations for HCV infection screening to include all adults age 18 years or older (and for all pregnant women during each pregnancy) because of cost effectiveness, limited success of risk-based screening, and availability of curative treatment.

Active HCV infection disqualifies an individual from military accession because its proper clinical management conflicts with initial training and mission readiness. Three disqualifying criteria for active or recent HCV infection include: history of chronic HCV without successful treatment or without documentation of cure 12 months after completion of a full course of therapy; acute infection within the preceding 6 months; or persistence of symptoms or evidence of impaired liver function. Force screening for HCV is not currently performed during U.S. Air Force (USAF) Basic Military Training (BMT) although screening is completed for other viral infections (including HIV, hepatitis A, and hepatitis B). As a result, the true prevalence of chronic HCV infection cannot be ascertained in the basic trainee population. However, the prevalence can be estimated based on the number of HCV infections confirmed following positive screening during trainee blood donations.

Trainees voluntarily donate blood near the end of BMT and are thus able to donate only once while at BMT. Concurrent testing for HCV antibody and HCV RNA occurs at the time of blood donation. If a trainee's blood tests positive for HCV antibody but negative for HCV RNA, a third generation enzyme immunoassay (EIA) is used for confirmation. A positive test for HCV antibody in addition to either a positive HCV RNA or EIA test indicates active infection. Alternatively, a positive HCV antibody test in an individual with negative RNA and EIA tests typically denotes a cleared infection.

From Nov. 2013 through April 2016, the estimated prevalence of HCV infection among volunteer recruit blood donors at Joint Base San Antonio (JBSA)-Lackland Blood Donor Center was 0.007%.8 The goal of this inquiry was to estimate the most recent prevalence of HCV infections within the USAF basic training population during 2017–2020.

Methods

The JBSA-Lackland Blood Donor Center was queried for the results of HCV screening for all basic military trainees who donated blood between Jan. 1, 2017 and Dec. 31, 2020. All other blood donations (those from individuals other than basic trainees) during this time period were excluded. HCV prevalence in those who donated blood was calculated using the total trainee donations as the denominator. Since trainees are only able to donate once before departing BMT, these donations represent unique trainees. The numerator included those who screened positive upon donation and were also confirmed to have active infection upon subsequent testing. Positive HCV cases were ascertained from a local database, which included demographic, diagnostic, and laboratory data for all USAF recruits, maintained by Trainee Health Surveillance. This database was queried for International Classification of Diseases, 10th Revision (ICD-10) diagnostic codes K70–K77 (diseases of the liver) and B15–B19 (viral hepatitis); the codes for all hepatitides were initially utilized so as to conduct a wide search in case of coding errors. A possible case was defined as a trainee receiving a qualifying ICD-10 code in any diagnostic position during an outpatient medical encounter and was restricted to 1 case per person during the surveillance period. The electronic medical records of possible cases were reviewed and those diagnosed with current HCV infection due to blood screening from BMT blood donation were counted as true cases. Such screened positive BMT cases were confirmed by comparing them to those reported by the Blood Donation Center. The Fisher's exact test for count data was used to compare the prevalence computed for the period from 2017 through 2020 to the prevalence during the period from 2013 through 2016.

Results

From 2017 through 2020, 29,615 unique individual trainees from USAF BMT donated blood (out of 146,325 total trainees attending BMT during that time) and had their blood donations screened for HCV. From this group, a total of 85 individuals screened positive for HCV antibodies; of these, 6 were confirmed to be positive for active HCV infection (positive HCV RNA or EIA) (Table). The prevalence of HCV in those BMT trainees who were screened from 2017 through 2020 was 0.0203% (6 of 29,615 screened) (data not shown), which is 3.1 times (p=.173) the prevalence of HCV infection in this population during 2013–2016 (0.0065%, 2 of 30,660 screened).8 Of note, during 2017–2020, one additional case of HCV in BMT was diagnosed clinically based on symptoms; however, this case was excluded in the prevalence calculation because it was not from a blood donation.

Editorial Comment

The prevalence of HCV infection in BMT trainee blood donors from 2017 through 2020 was 3.1 times the prevalence among trainees who donated from 2013 through 2016.8 While the difference in prevalence was not statistically significant (p=.173), it may reflect the recent increases in incidence among U.S. young adults, as noted by the CDC,2 perhaps due to increased injection drug use.3,4

This study is limited in that the screened blood came from only those trainees attempting to donate blood, so the data do not directly estimate HCV prevalence for all trainees as would be the case from a random sample of the entire BMT trainee population. If the prevalence in blood donors reflected that in basic trainees overall, there would have been approximately 30 active HCV infections among basic trainees during the 4 year period; and of these, only approximately 20% were detected through blood donor screening.

Instituting accession-wide HCV screening at USAF BMT by adding it to the current lab evaluation would be an efficient method of ensuring that all new USAF enlisted service members are up to date on this screening as recommended by USPSTF, CDC, and AASLD.

Author affiliations: 559th Trainee Health Squadron, JBSA-Lackland, TX (Maj Kasper, Capt Holland, and Maj Kieffer); Office of the Command Surgeon, Air Education and Training, JBSA-Randolph, TX (Maj Frankel); 59th Medical Wing, Science and Technology, JBSA-Lackland, TX (Ms. Cockerell); Air Force Medical Readiness Agency, Falls Church, VA (Lt Col Molchan).

Disclaimer: The views expressed are those of the authors and do not reflect the official views or policy of the Department of Defense or its Components. In addition, the opinions expressed on this document are solely those of the authors and do not represent endorsement by or the views of the United States Air Force, the Department of Defense, or the United States Government.

References

  1. Hofmeister MG, Rosenthal EM, Barker LK, et al. Estimating prevalence of hepatitis C virus infection in the United States, 2013–2016. Hepatology. 2019;69(3):1020–1031.
  2. Centers for Disease Control and Prevention. 2019 Viral Hepatitis Surveillance Report- Hepatitis C. Published July 2021. Accessed 9 Aug. 2021. https://www.cdc.gov/hepatitis/statistics/2019surveillance/HepC.htm
  3. Zibbell JE, Asher AK, Patel RC, et al. Increases in acute hepatitis C virus infection related to a growing opioid epidemic and associated injection drug use, United States, 2004 to 2014. Am J Public Health. 2018;108(2):175–181.
  4. Suryaprasad AG, White JZ, Xu F, et al. Emerging epidemic of hepatitis C virus infections among young nonurban persons who inject drugs in the United States, 2006-2012. Clin Infect Dis. 2014;59(10):1411–1419.
  5. Ghany MG, Morgan TR; AASLD-IDSA Hepatitis C Guidance Panel. Hepatitis C Guidance 2019 Update: American Association for the Study of Liver Diseases – Infectious Diseases Society of America recommendations for testing, managing, and treating hepatitis C virus infection. Hepatology. 2020;71(2):686–721.
  6. US Preventive Services Task Force; Owens DK, Davidson KW, et al. Screening for hepatitis C virus infection in adolescents and adults: US Preventive Services Task Force Recommendation Statement. JAMA. 2020;323(10):970–975.
  7. Schillie S, Wester C, Osborne M, Wesolowski L, Ryerson AB. CDC Recommendations for hepatitis C screening among adults - United States, 2020. MMWR Recomm Rep. 2020;69(2):1–17.
  8. Taylor DF, Cho RS, Okulicz JF, Webber BJ, Gancayco JG. Brief report: Prevalence of hepatitis B and C virus infections in U.S. Air Force basic military trainees who donated blood, 2013-2016. MSMR. 2017;24(12):20–22.

TABLE. Demographics and disposition of the 6 confirmed HCV cases identified through blood donation screening at Air Force Basic Military Training, 2017–2020

You also may be interested in...

A new approach to categorization of ocular injury among U.S. Armed Forces

Article
2/1/2022
Cover 2a

Ocular injuries present an ongoing threat to readiness and retention of service members. This report describes a new approach to categorizing ocular injury using Military Health System data, the application of an algorithm to a dataset, and the verification of the results using an audit of clinical data.

Surveillance snapshot: Health care burden attributable to osteoarthritis and spondylosis, active component, U.S. Armed Forces, 2016–2020

Article
2/1/2022
Cover 4

This snapshot summarizes the total numbers of inpatient and outpatient encounters with an OA or spondylosis diagnosis in the first diagnostic position and the total numbers of unique individuals affected by these conditions during the same 5-year surveillance period.

Diagnosis of hepatitis C infection and cascade of care in the active component, U.S. Armed Forces, 2020

Article
2/1/2022
Cover 1 a

Hepatitis C virus (HCV) infection rates are rising in the U.S. despite widely available tools to identify and effectively treat nearly all of these cases. This cross-sectional study aimed to use laboratory data to evaluate the prevalence of HCV diagnoses among active component U.S. military service members.

Description of a COVID-19 Beta Variant Outbreak, Joint Base Lewis-McChord, WA, Feb.–March 2021

Article
1/1/2022
Covid Beta

This report describes an outbreak of SARS-CoV-2, the causative agent of COVID-19, that peaked during 21–26 Feb. 2021 and was tied to a single military training event. A total of 143 laboratory-confirmed cases were identified.

Surveillance Snapshot: Lengths of Hospital Stays for Service Members Diagnosed with Sepsis, Active Component, U.S. Armed Forces, 2011–2020

Article
1/1/2022
Cover 4

Sepsis is a serious and life-threatening organ dysfunction caused by a dysregulated host response to infection. In the U.S., sepsis is a leading cause of in-hospital mortality and 1 of the most expensive conditions treated in U.S. hospitals.

COVID-19 and Depressive Symptoms Among Active Component U.S. Service Members, January 2019–July 2021

Article
1/1/2022
Cover 3

This study examined the rates of depressive symptoms in active component U.S. service members prior to and during the COVID-19 pandemic and evaluated whether SARS-CoV-2 test results (positive or negative) were associated with self-reported depressive symptoms.

Update: Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
12/1/2021
1_Update_Osteoarthritis

Osteoarthritis (OA), the most com­mon adult joint disease, is primarily a degenerative disorder of the entire joint organ, including the subchondral bone, synovium, and periarticular structures (e.g., tendons, ligaments, bursae). Spondylosis, often referred to as OA of the spine, is characterized by degenerative changes in the vertebral discs, joints, and vertebral bodies.

Incident COVID-19 Infections, Active and Reserve Components, Jan. 1, 2020–Aug. 31, 2021

Article
12/1/2021
2_Incident COVID 19 infections

Incident COVID-19 Infections, Active and Reserve Components, 1 January 2020–31 August 2021

Surveillance Snapshot: Donovanosis Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
12/1/2021
3_Surveillance snapshot_Donovanosis

Donovanosis, or granuloma inguinale, is an uncommon sexually transmitted infection (STI) that is much rarer than chlamydia, gonorrhea, and syphilis. Donovanosis is found mainly in tropical regions, and is highly correlated with populations affected by poverty and lack of access to hygiene and public health infrastructure. However, recent news reports have described donovanosis as a "flesh-eating" STI that may be increasing in incidence in developed countries.

Sepsis Hospitalizations Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Article
11/1/2021
1_Sepsis

Update: Plant Dermatitis Among Active Component Service Members, U.S. Armed Forces, 2010–2020

Article
11/1/2021
3_Plant dermatitis  Zion National Park

Plant dermatitis is an allergic inflammatory skin reaction in response to the oils of poisonous plants. In the U.S., the most common dermatitis-causing plant genus is the Toxicodendron (formerly Rhus). Approximately 50%–75% of the U.S. adult population are susceptible to skin reactions upon exposure to Toxicodendron oil or oleoresin, called urushiol.

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Health Care Workers, August 2016–April 2021

Article
10/1/2021
4_Snapshot_influenza immunization health care workers

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2016–June 2020

Article
10/1/2021
1_Update_Cold weather injuries

Surveillance Snapshot: History of COVID-19 Vaccination Among Air Force Recruits Arriving at Basic Training, March 2–June 15, 2021

Article
10/1/2021
COVID-19 vaccine bottle and syringes

Brief Report: The Challenge of Interpreting Repeated Positive Tests for SARS-CoV-2 Among Military Service Members, Fort Jackson, SC, 2020–2021

Article
10/1/2021
2_Brief report_the challenge of interpreting recurrent SarsCOV2
Page 5 of 15 , showing items 61 - 75
First < 1 2 3 4 5  ... > Last 
Refine your search
Last Updated: October 18, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery