Back to Top Skip to main content Skip to sub-navigation

Sepsis Hospitalizations Among Active Component Service Members, U.S. Armed Forces, 2011–2020

Image of SAN DIEGO (Oct. 19, 2020) Hospital Corpsman 2nd Class Brittni Porter, a laboratory technician assigned to Naval Medical Center San Diego’s (NMCSD) microbiology laboratory, exams agar slides during a drug susceptibility tests Oct. 19. Drug susceptibility tests are conducted to see if a particular antibiotic will react with a patient’s sample on an agar slide. NMCSD’s mission is to prepare service members to deploy in support of operational forces, deliver high quality healthcare services and shape the future of military medicine through education, training and research. NMCSD employs more than 6,000 active duty military personnel, civilians, and contractors in Southern California to provide patients with world-class care anytime, anywhere. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Greenberg). SAN DIEGO (Oct. 19, 2020) Hospital Corpsman 2nd Class Brittni Porter, a laboratory technician assigned to Naval Medical Center San Diego’s (NMCSD) microbiology laboratory, exams agar slides during a drug susceptibility tests Oct. 19. Drug susceptibility tests are conducted to see if a particular antibiotic will react with a patient’s sample on an agar slide. NMCSD’s mission is to prepare service members to deploy in support of operational forces, deliver high quality healthcare services and shape the future of military medicine through education, training and research. NMCSD employs more than 6,000 active duty military personnel, civilians, and contractors in Southern California to provide patients with world-class care anytime, anywhere. (U.S. Navy photo by Mass Communication Specialist 3rd Class Jake Greenberg)

Recommended Content:

Medical Surveillance Monthly Report

What are the New Findings?

Incidence of sepsis hospitalizations is increasing in the active component. The highest rates were seen in female service members, the oldest and youngest age groups, and recruits. The incidence rate gap between male and female service members increased over time. There was a sharp decline in sepsis diagnoses in 2020 during the COVID-19 pandemic.

What is the Impact on Readiness and Force Health Protection?

Sepsis is a severe, life-threatening condition that poses an increasing risk to U.S. military members. It leads to long hospital stays and recovery periods and detracts from readiness and deployability. Sex disparities in sepsis rates highlight a women's force health protection issue that requires further investigation.

Abstract

The objective of this study was to assess the incidence and trends of sepsis hospitalizations in the active component U.S. military over the past decade. Between Jan. 1, 2011 and Dec. 31, 2020, there were 5,278 sepsis hospitalizations of any severity recorded among the active component. The overall incidence was 39.8 hospitalizations per 100,000 person-years (p-yrs). Annual incidence increased 64% from 2011 through 2019, then dropped considerably in 2020. Compared to their respective counterparts, rates were highest among female service members, the oldest and youngest age groups, and recruits. The gap in sepsis hospitalization rates between female and male service members increased over the surveillance period. Pneumonia was the most commonly co-occurring infection, followed by genitourinary infections. Among female service members, genitourinary infections were more commonly diagnosed compared to pneumonia. The most common non-infection co-occurring diagnoses were acute kidney failure and acute respiratory failure. This study demonstrates an apparent sex disparity in sepsis rates and further study is recommended to understand its cause.

Background

Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection.1 Septic shock is a more severe manifestation of the same process with hypotension and inadequate tissue perfusion. Septicemia is an older term no longer in clinical use because it is nonspecific and blends the concepts of sepsis and bloodstream infection which are not necessarily synonymous.

The third international consensus definitions for sepsis and septic shock (Sepsis-3) were published in 2016.1 Prior to this, the term sepsis was used for a dysregulated host response without organ dysfunction and severe sepsis was used if organ dysfunction was present. Sepsis-3, however, makes organ dysfunction a component of sepsis, thereby making severe sepsis a superfluous term. Severe sepsis is, however, still used in administrative coding practices.

Sepsis and septic shock are common causes of hospitalization, morbidity, and mortality requiring rapid, protocol-based treatment, usually with broad-spectrum empiric antibiotics. Understanding the epidemiology of sepsis and septic shock as well as the underlying infections and co-occurring conditions is vital for recognition of risk factors and implementation of appropriate empiric treatment protocols.

Recent studies have found 50 million cases of sepsis (of any severity) worldwide and over 1 million cases in the U.S. in 2017, among which 189,623 deaths occurred.2 Despite evidence of increased incidence of sepsis in the general population, the current impact of this condition on the U.S. military is largely unknown. The only military surveillance study, published in 2013, reviewed the annual incidence of septicemia among active component service members for the years 2000 –2012.3 This study found an overall incidence of 13.2 cases per 100,000 p-yrs. Incident cases increased dramatically over the surveillance period, in particular from 2004 through 2012 when there was a 570% increase in the annual incidence rate of septicemia as a primary diagnosis, likely attributable to changes in definitions and coding practices.3 In addition, there were differences in sepsis rates between demographic groups, with higher overall rates of septicemia in female compared to male service members, the youngest and oldest individuals (age <20 and 45+) compared to those aged 20–44, Marines compared to members of other services, recruits in basic training compared to non-recruits, junior enlisted compared to senior enlisted service members, and senior officers compared to junior officers.3

In addition to changes in clinical definitions and criteria, the Military Healthcare System (MHS) transitioned from using the 9th revision of the International Classification of Diseases (ICD-9) to the 10th revision (ICD-10) for coding purposes in October 2015. ICD-10 did not include septicemia, but added more specific codes which include the causative organisms (when known). In light of major substantive changes to the definition of sepsis, both clinical and administrative, updated surveillance data on the impact of sepsis on the U.S. military are needed. This report summarizes the frequencies, rates, and trends of incident diagnoses of septicemia, sepsis, severe sepsis, and septic shock among members of the active component of the U.S. Armed Forces over the past decade. It also describes frequencies of diagnoses of sepsis, infectious agents, and co-occurring conditions during hospitalizations with incident diagnoses of septicemia, sepsis, severe sepsis, and septic shock.

Methods

This study included all U.S. Army, Air Force, Navy, and Marine Corps members who served in the active component at any time between Jan. 1, 2011 and Dec. 31, 2020. All data used in this analysis were derived from the Defense Medical Surveillance System (DMSS), which maintains electronic records of all actively serving U.S. military members' hospitalizations and ambulatory visits in U.S. military and civilian (contracted/Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care through the MHS) medical facilities worldwide. Defense Manpower Data Center (DMDC) Contingency Tracking System (CTS) records for service member deployments are also maintained in the DMSS, which include the dates and countries of deployment.

Several studies have attempted to validate and optimize case definitions for sepsis using ICD-10 data, and have recommended using broad search criteria.4,5 In this study, incident sepsis cases of any severity (i.e., septicemia, sepsis, severe sepsis, or septic shock) were identified from records of hospitalizations that included any diagnostic codes (ICD-9 and ICD-10) specific for these conditions (Table 1). Cases from hospitalization records were included if they had any of these codes recorded in any diagnostic position. An individual could account for multiple incident cases if there were more than 14 days between the dates of consecutive incident case-defining encounters. Co-occurring conditions were identified by ICD-9 and ICD-10 codes from the incident hospitalizations with a concurrent sepsis-related code.

Data were obtained from DMSS for 9 covariates: age group, race/ethnicity group, sex, branch of service, rank, geographic region, deployed status, recruit status, and military occupation. An Armed Forces Health Surveillance Division algorithm based on age, rank, duty location, and time since entry into military service was used to determine recruit basic training status. Deployed status was defined as being currently deployed on the date of diagnosis or deployed within the past 30 days to any known location (deployments to unknown locations or bodies of water were excluded).

Incidence rates were calculated as incident cases per 100,000 p-yrs. Overall incidence rates as well as rates stratified by covariates were calculated for both the total surveillance period and for each calendar year of surveillance. For the purpose of describing frequencies of diagnoses for sepsis, infections, and co-occurring conditions, ICD-9 and ICD-10 codes were placed in three categories: 1) sepsis codes which included all case-defining codes in Table 1; 2) infection codes which included codes for co-occurring infections; and 3) co-occurring diagnoses which included other codes that do not fit into the other 2 categories and could represent risk factors for sepsis, sequelae from sepsis, or be unrelated to sepsis. Based on clinical experience some codes which did not specify an infection were included in the infection codes category because they are potentially causal for sepsis (e.g., acute pancreatitis, non-infective gastroenteritis and colitis). All analyses were performed using SAS/STAT software, version 9.4 (2014, SAS Institute, Cary, NC).

Results

Overall, there were a total of 5,278 incident hospitalizations with any sepsis diagnosis (i.e., sepsis, severe sepsis, septic shock, septicemia) during the study period (Table 2). These 5,278 hospitalizations occurred among 5,039 unique individuals. A total of 4,842 service members had 1 hospitalization during the study period, and 197 service members had 2 or more hospitalizations (Table 3). Service members who had multiple hospitalizations during the study period were more likely to be male (84.3%) and older (39.6% aged 35 or older), compared to those with only 1 hospitalization during the study period (74.2% male and 24.4% aged 35 or older).

The crude overall incidence of sepsis hospitalization was 39.8 cases per 100,000 p-yrs and there was a 64% increase in annual rates from 2011 through 2019 (31.1 cases to 51.0 cases per 100,000 p-yrs, respectively). In 2020, the crude incidence of sepsis declined to 42.0 cases per 100,000 p-yrs (data not shown).

Incidence was higher among female than male service members (63.4 vs 35.4 cases per 100,000 p-yrs, respectively; incidence rate ratio [IRR]=1.8). The incidence of sepsis among male service members was relatively consistent over time, while that among female service members showed an increasing trend, peaking in 2019 at a rate of 91.8 cases per 100,000 p-yrs (Figure 1). Overall incidence was highest among those under 20 years old (63.1 cases per 100,000 p-yrs) and older than 45 years (70.2 cases per 100,000 p-yrs) compared to those aged 20 –45. There were no pronounced differences in overall incidence rates of sepsis diagnoses between race/ethnicity groups.

Marines had a higher overall incidence compared to their counterparts in the Army, Navy, or Air Force (Table 2). This was primarily due to higher annual incidence in Marines from 2011 through 2013. After 2013, annual rates were similar and stable among the branches, except for 2019 when Marines again had a higher rate (Figure 2). Recruits had nearly double the overall incidence of non-recruit active component members (72.6 vs 39.1 cases per 100,000 p-yrs, respectively, IRR=1.9). Junior officers had the lowest overall rate of incident sepsis diagnoses. Pilots and air crew had the lowest overall incidence rate of sepsis compared to other occupations, while health care workers had the highest.

Among active component service members stationed within the continental U.S., those in the Northeast had lower overall rates compared to the Midwest, South, and West. Service members stationed overseas had considerably lower rates than those in any continental U.S. regions. Deployed or recently deployed service members had a lower overall incidence rate than those who were non-deployed.

Case-Defining Codes

The most frequent case-defining ICD-9 diagnoses (Table 4) were unspecified septicemia and sepsis, followed by severe sepsis and septic shock. Combination codes containing specific infectious organisms were used infrequently. The most frequent case-defining ICD-10 diagnoses were sepsis of unspecified organism, severe sepsis without shock, severe sepsis with shock, and other specified sepsis. Combination ICD-10 codes were also used infrequently.

Among all sepsis combination codes, Escherichia coli (E. coli) was used most frequently under both ICD-9 and ICD-10, followed by Streptococcus, methicillin susceptible Staphylococcus aureus (MSSA), and unspecified gram-negative organisms under ICD-9, and MSSA and puerperal sepsis under ICD-10.

Infections

The most common co-occurring infections based on ICD-9 codes were pneumonia with unspecified organism, unspecified pyelonephritis, urinary tract infection, postoperative infection, and cellulitis of the leg (Table 5). Based on ICD-10 codes, the most frequent infections were pneumonia from unspecified organism, acute tubulo-interstitial nephritis, unspecified urinary tract infection, unspecified E. coli infection, and unspecified tubulo-interstitial nephritis. While pneumonia was commonly diagnosed in both male and female service members, urinary tract infections, pyelonephritis, and pyonephrosis were much more frequently seen in female service members whereas cellulitis was much more common in males. Some codes such as puerperal sepsis were only applicable to female service members, although these accounted for a small proportion of sepsis codes in female service members. Pneumonia was by far the most frequently diagnosed infection in both recruits and non-recruits. Codes for cellulitis were more frequently documented in recruits than non-recruits, while pyelonephritis and urinary tract infections were more frequently documented in non-recruits (data not shown).

Co-Occurring Diagnoses

The most frequent co-occurring diagnoses other than infections based on ICD-9 codes were unspecified acute kidney failure, acute respiratory failure, tobacco use disorder, hypoosmolality and/or hyponatremia, and hypopotassemia (Table 6). Under ICD-10, the most frequent co-occurring diagnoses were unspecified acute kidney failure, acute respiratory failure with hypoxia, hypo-osmolality and hyponatremia, hypokalemia, and dehydration. Male and female service members had similar co-occurring diagnoses, though respiratory failure and tobacco use disorder were less frequently diagnosed in female service members (data not shown).

Editorial Comment

Overall, annual sepsis rates increased between 1 January 2011 and 31 December 2020, with the exception of a sharp decrease in 2020. The highest overall rates were seen among female service members, the oldest and youngest age groups, and recruits. The incidence rate gap between male and female service members widened over the surveillance period. Overall, pneumonia was the most commonly coded co-occurring infection, followed by various infections of the urinary tract with genitourinary infections being more common in female service members and pneumonia and cellulitis more common in male service members. Various codes for pneumonia, followed by cellulitis, made up the majority of coded infections among recruits, with very few genitourinary infections. The most common co-occurring diagnoses were acute kidney failure and acute respiratory failure.

Studies using administrative data to assess the incidence of sepsis in the general U.S. population have produced results that have varied widely depending on the spectrum of sepsis evaluated (e.g., all sepsis vs only severe sepsis) and the coding case definition used.6 Reported sepsis rates in the U.S. are higher than active component rates (U.S. in 2017 had 254.9 cases per 100,000 population compared to 39.8 per 100,000 p-yrs in the active component), though the results are not directly comparable because of significant demographic differences between the general U.S. and military populations.2 Despite the varying results in the overall annual rates, U.S. population-based studies did show consistent findings in certain demographic groups. They consistently show higher rates of sepsis among males, which is the inverse of this study's findings in the active component. The reasons for this difference are unknown, but this trend has persisted since 2006 and deserves further study.3 Infections that are specific to female service members such as pregnancy-related infections were seen, but in relatively small numbers. Another major difference seen in this study was the lack of racial disparities with regards to sepsis incidence. In contrast, U.S. population-based studies have consistently reported higher sepsis rates among non-Hispanic Blacks compared to non-Hispanic Whites. One possible explanation for this difference is universal health coverage and access to care among the active component population. Additionally, some underlying risk factors for more severe infections such as diabetes mellitus and chronic lung disease, which disproportionately affect the American Indian/Alaska Native, non-Hispanic Black and Hispanic communities, are less prevalent in the active component than in the U.S. civilian population.7

There are several major challenges in current epidemiological surveillance of sepsis, particularly stemming from changing clinical definitions and coding practices, in addition to the lack of universal acceptance of any specific set of definitions. Sepsis-3 moved away from using systemic inflammatory response syndrome (SIRS) criteria and began using the more comprehensive sequential organ failure assessment (SOFA) score, but there is still no specific diagnostic definition nor any specific laboratory test that universally confirms the diagnosis of sepsis.8 Likely due to this study's broad case definition, there were no drastic changes in sepsis rates between 2015 and 2016 despite the new clinical definitions and ICD-10 turnover around that time. For cases prior to the transition to ICD-10, ICD-9 codes consistent with septicemia, sepsis, or septic shock were used, but codes for bacteremia or other infection which did not imply sepsis were omitted, which explains the slight difference in ICD-9 codes used here compared to prior articles looking at active component military members.

Use of coding data for sepsis, where there are no clear diagnostic criteria, has inherent potential for misclassification bias. Because there is clinical variability in the diagnosis, there is also potential for different diagnostic patterns from different medical specialties which could have a differential impact. For example, if obstetricians were more likely than internal medicine physicians to diagnose patients under their care with sepsis, this could impact the apparent difference in incidence between male and female service members. This study did not evaluate underlying risk factors unless they were coded during the same encounter. There also is potential for confounding between covariates such as race/ethnicity outcomes being attenuated by occupation or branch of service (or vice versa).

The findings of this study suggest that sepsis is an increasing threat to force health protection and is a growing women's health threat as well. Further research is required to evaluate key findings, especially the apparent sex disparity in sepsis rates in the active component which is the inverse of the pattern in the general U.S. population. Such future research should also include adjusted (e.g., age, sex) rates. Studies using clinical and microbiological data would be useful to better understand this growing threat. Additionally, looking into the reasons behind the decline in sepsis diagnoses in 2020 during the COVID-19 pandemic is important. Changes in health care-seeking behavior may play a role, although how much this would be the case for a life-threatening condition like sepsis is unknown. It is possible that mitigation measures put in place during the pandemic impacted the overall incidence of sepsis by decreasing other infections, especially other respiratory diseases. For example, smaller numbers of recruits, restriction of movement procedures, and enforced social distancing during recruit training may have played a role, and if so could provide valuable information to help structure recruit training in the future in a way that minimizes unnecessary infection risk.

Author affiliations: Uniformed Services University of Health Sciences (LCDR Snitchler); Armed Forces Health Surveillance Division (Dr. Chauhan, Dr. Patel, Dr. Stahlman, CAPT Wells, Ms. Mcquistan).

Disclaimer: The contents of this manuscript are the sole responsibility of the authors and does not necessarily reflect the views, opinions, or policies of the Uniformed Services University of the Health Sciences, the Department of the Navy, the Department of Defense, or the United States Government. Mention of trade names, commercial products, or organizations does not imply endorsement by the United States Government.

References

1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. 2016;315(8):801–810.

2. Rudd KE, Johnson SC, Agesa KM, et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: analysis for the Global Burden of Disease Study. Lancet. 2020;395(10219):200–211.

3. Septicemia diagnosed during hospitalizations, active component service members, U.S. Armed Forces, 2000–2012. MSMR. 2013;20(8):10–16.

4. Jolley RJ, Quan H, Jetté N, et al. Validation and optimization of an ICD-10-coded case definition for sepsis using administrative health data. BMJ Open. 2015;5(12):e009487.

5. Jolley RJ, Sawka KJ, Yergens DW, Quan H, Jetté N, Doig CJ. Validity of administrative data in recording sepsis: a systematic review. Crit Care. 2015;19(1):139. 

6. Kempker JA, Martin GS. The changing epidemiology and definitions of sepsis. Clin Chest Med. 2016;37(2):165–179.

7. Williams VF, Oh G, Stahlman S, Shell D. Diabetes mellitus and gestational diabetes, active and reserve component service members and dependents, 2008–2018. MSMR. 2020;27(2):8–17.

8. Centers for Disease Control and Prevention. Hospital toolkit for adult sepsis surveillance. Published March 2018. Accessed 16 July 2021. https://www.cdc.gov/sepsis/pdfs/Sepsis-Surveillance-Toolkit-Mar-2018_508.pdf

FIGURE 1. Annual sepsis hospitalization incidence, by sex, active component, U.S. Armed Forces, 2011–2020

FIGURE 2. Annual sepsis hospitalization incidence by service branch, active component, U.S. Armed Forces, 2011–2020

TABLE 1. Case-defining ICD codes for sepsis

TABLE 2. Rate of sepsis hospitalizations, active component, U.S. Armed Forces, 2011–2020

TABLE 3. Number of individuals who had one or multiple sepsis hospitalizations, active component, 2011–2020

TABLE 4. Frequency distribution of case-defining ICD codes for sepsis among hospitalized members of active component, U.S, Armed Forces, 2011–2020

TABLE 5. Frequency distribution of co-occurring infections among hospitalized cases of sepsis, active component, U.S, Armed Forces, 2011–2020

TABLE 6. Frequency distribution of other co-occurring diagnoses of non-infectious conditions among hospitalized cases of sepsis, active component, U.S, Armed Forces, 2011–2020

You also may be interested in...

MSMR Vol. 29 No. 07 - July 2022

Report
7/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Non-service Member Beneficiaries of the Military Health System, 2021

Article
6/1/2022

In 2021, mental health disorders accounted for the largest proportions of the morbidity and health care burdens that affected the pediatric and younger adult beneficiary age groups. Among adults aged 45–64 and those aged 65 or older, musculoskeletal diseases accounted for the most morbidity and health care burdens. As in previous years, this report documents a substantial majority of non-service member beneficiaries received care for current illness and injury from the Military Health System as outsourced services at non-military medical facilities.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Article
6/1/2022
Surveillance snapshot: Illness and injury burdens, reserve component, U.S. Armed Forces, 2021

Recommended Content:

Medical Surveillance Monthly Report

Morbidity Burdens Attributable to Various Illnesses and Injuries, Deployed Active and Reserve Component Service Members, U.S. Armed Forces, 2021

Article
6/1/2022

As in previous years, among service members deployed during 2021, injury/poisoning, musculoskeletal diseases and signs/symptoms accounted for more than half of the total health care burden during deployment. Compared to garrison disease burden, deployed service members had relatively higher proportions of encounters for respiratory infections, skin diseases, and infectious and parasitic diseases. The recent marked increase in the percentage of total medical encounters attributable to the ICD diagnostic category "other" (23.0% in 2017 to 44.4% in 2021) is likely due to increases in diagnostic testing and immunization associated with the response to the COVID-19 pandemic.

Recommended Content:

Medical Surveillance Monthly Report

Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

Article
6/1/2022
Medical Evacuations out of the U.S. Central and U.S. Africa Commands, Active and Reserve Components, U.S. Armed Forces, 2021

The proportions of evacuations out of USCENTCOM that were due to battle injuries declined substantially in 2021. For USCENTCOM, evacuations for mental health disorders were the most common, followed by non-battle injury and poisoning, and signs, symptoms, and ill-defined conditions. For USAFRICOM, evacuations for non-battle injury and poisoning were most common, followed by disorders of the digestive system and mental health disorders.

Recommended Content:

Medical Surveillance Monthly Report

Ambulatory Visits, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022

In 2021, the overall numbers and rates of active component service member ambulatory care visits were the highest of any of the last 10 years. Most categories of illness and injury showed modest increases in numbers and rates. The proportions of ambulatory care visits that were accomplished via telehealth encounters fell to under 15% in 2021, compared to 19% in 2020.

Recommended Content:

Medical Surveillance Monthly Report

Hospitalizations, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022

The hospitalization rate in 2021 was 48.0 per 1,000 person-years (p-yrs), the second lowest rate of the most recent 10 years. For hospitalizations limited to military facilities, the rate in 2021 was the lowest for the entire period. As in prior years, the majority (71.2%) of hospitalizations were associated with diagnoses in the categories of mental health disorders, pregnancy-related conditions, injury/poisoning, and digestive system disorders.

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Various Illnesses and Injuries, Active Component, U.S. Armed Forces, 2021

Article
6/1/2022

In 2021, as in prior years, the medical conditions associated with the most medical encounters, the largest number of affected service members, and the greatest number of hospital days were in the major categories of injuries, musculoskeletal disorders, and mental health disorders. Despite the pandemic, COVID-19 accounted for less than 2% of total medical encounters and bed days in active component service members.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021

Article
5/1/2022
iStock—The castor bean tick (Ixoedes ricinus). Credit: Erik Karits

Tick-borne Encephalitis in Military Health System Beneficiaries, 2012–2021. Tick-borne encephalitis (TBE) is a viral infection of the central nervous system that is transmitted by the bite of infected ticks, mostly found in wooded habitats in parts of Europe and Asia

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of ICD-10-CM-based Case Definitions of Ambulatory Encounters for COVID-19 Among Department of Defense Health Care Beneficiaries

Article
5/1/2022
SEATTLE, WA, UNITED STATES 04.05.2020 U.S. Army Maj. Neil Alcaria is screened at the Seattle Event Center in Wash., April 5. Soldiers from Fort Carson, Colo., and Joint Base Lewis-McChord, Wash. have established an Army field hospital center at the center in support of the Department of Defense COVID-19 response. U.S. Northern Command, through U.S. Army North, is providing military support to the Federal Emergency Management Agency to help communities in need. (U.S. Army photo by Cpl. Rachel Thicklin)

This is the first evaluation of ICD-10-CM-based cased definitions for COVID-19 surveillance among DOD health care beneficiaries. The 3 case definitions ranged from highly specific to a lower specificity, but improved balance between sensitivity and specificity.

Recommended Content:

Medical Surveillance Monthly Report

Update: Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2013–2021

Article
5/1/2022
This illustration depicts a 3D computer-generated image of a number of drug-resistant Neisseria gonorrhoeae bacteria. CDC/James Archer

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2013–2021. In general, compared to their respective counterparts, younger service members, non-Hispanic Black service members, those who were single and other/unknown marital status, and enlisted service members had higher incidence rates of STIs.

Recommended Content:

Medical Surveillance Monthly Report

The Association Between Two Bogus Items, Demographics, and Military Characteristics in a 2019 Cross-sectional Survey of U.S. Army Soldiers

Article
5/1/2022
NIANTIC, CT, UNITED STATES 06.16.2022 U.S. Army Staff Sgt. John Young, an information technology specialist assigned to Joint Forces Headquarters, Connecticut Army National Guard, works on a computer at Camp Nett, Niantic, Connecticut, June 16, 2022. Young provided threat intelligence to cyber analysts that were part of his "Blue Team" during Cyber Yankee, a cyber training exercise meant to simulate a real world environment to train mission essential tasks for cyber professionals. (U.S. Army photo by Sgt. Matthew Lucibello)

Data from surveys may be used to make public health decisions at both the installation and the Department of the Army level. This study demonstrates that a vast majority of soldiers were likely sufficiently engaged and answered both bogus items correctly. Future surveys should continue to investigate careless responding to ensure data quality in military populations.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
The Embry-Riddle Army ROTC Ranger Challenge team heads out on the 12-mile road march after completing the timed obstacle course event of the 6th Brigade Army ROTC Ranger Challenge January 14, 2022 at Fort Benning, Ga. The Titan Brigade’s Ranger Challenge took place at Fort Benning, Ga. January 13-15, 2022. Photo by Capt. Stephanie Snyder

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Recommended Content:

Medical Surveillance Monthly Report

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Airmen participate in the 13th Annual Fallen Defender Ruck March at Joint Base San Antonio, Nov. 6, 2020. The event honors 186 fallen security forces, security police and air police members who have made the ultimate sacrifice. Photo By: Sarayuth Pinthong, Air Force.

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 13
Refine your search
Last Updated: January 19, 2022

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.