Skip to main content

Military Health System

Brief Report: Department of Defense Midseason Estimates of Vaccine Effectiveness for the 2018–2019 Influenza Season

Image of Adminstration of a seasonal flu vaccination. (U.S. Navy photo). Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Recommended Content:

Medical Surveillance Monthly Report

Background

Military populations have historically been at high risk for acute respiratory infections, particularly training and deployed populations, who have living conditions that are often crowded and may be austere.1 Respiratory infections are responsible for over 300,000 medical encounters each year among U.S. active component service members, and the associated health care creates a substantial public health and economic burden on the Military Health System (MHS).1,2 Respiratory infections also account for approximately one-third of convalescence in quarters determinations and as such are a significant contributor to lost duty days.3 Viral respiratory pathogens are highly transmissible, and the specific types, trends, and risks often vary regionally and by setting.1 These variations are important for a globally dispersed force, as they inform risk assessments and ensure that proper preventive measures are implemented. Thus, the Department of Defense (DOD) conducts surveillance for respiratory infections both within the force and in other global populations. The Armed Forces Health Surveillance Branch's (AFHSB) Global Emerging Infections Surveillance (GEIS) section supports a global surveillance program, executed primarily by DOD service laboratories, at approximately 400 locations in over 30 countries. Respiratory infection surveillance data are regularly shared with the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). Because of frequent genetic mutations and the associated pandemic potential, influenza is of particular interest to the DOD and is a major focus of these surveillance efforts. Because influenza vaccination is the primary preventive countermeasure, the seasonal influenza vaccine's effectiveness is also closely monitored. Estimates of vaccine effectiveness (VE) are calculated twice annually: during the middle and at the end of the influenza season.

Methods

Three sites produced VE estimates for the DOD at midseason. The U.S. Air Force School of Aerospace Medicine/AFHSB-Air Force (USAFSAM/AFHSBAF) satellite VE estimate was produced from sentinel site surveillance within non-active component MHS beneficiaries (retirees and family members) receiving care at military treatment facilities (MTFs). The Naval Health Research Center (NHRC) VE estimate was derived from sentinel site influenza surveillance within civilian populations at clinics near the U.S.–Mexico border and among MHS beneficiaries (service members, retirees, and family members) receiving care at MTFs. The AFHSB's Epidemiology and Analysis (E&A) section VE estimate was derived from electronic health record (EHR) data from active component service members receiving care at MTFs.

For the 2018–2019 midseason, all 3 VE estimates were calculated using a test-negative case-control study design; crude and adjusted VE estimates, along with 95% confidence intervals (CIs), were calculated as (1 - odds ratio) x 100% and were obtained from multivariable logistic regression models. VE results were considered statistically significant if 95% CIs around VE estimates did not include zero.

USAFSAM/AFHSB-AF satellite's analysis adjusted for age group, time of specimen collection, region, and sex. NHRC's analysis adjusted for age group. AFHSB E&A's analysis adjusted for age group, month of diagnosis, 5-year vaccination status as a dichotomous variable, and sex. Analyses were performed for influenza types and subtypes as available. Cases were laboratory confirmed as influenza positive, and controls were influenza test negative. At NHRC and USAFSAM/AFHSB-AF satellite, influenza positives were confirmed through reverse transcription polymerase chain reaction (RT-PCR) and/or viral culture. AFHSB also used these methods for confirmation and included positive rapid tests, but individuals with only a negative rapid test, without another confirmatory test result were excluded from calculation of VE. USAFSAM/AFHSB-AF satellite verified vaccination status through EHR and self-report data, E&A verified vaccination status through EHR data, and NHRC used self-reported vaccination data. Nearly all vaccinated active duty and beneficiary patients received the inactivated influenza vaccine.

Results

Non-active component MHS beneficiary data were collected from 9 Dec. 2018 through 16 Feb. 2019. The analysis was restricted to this time period to provide a more accurate VE estimate, as earlier months of the influenza season are control-heavy. By the end of the surveillance period, 48% of 645 cases and 64% of 1,446 controls had been vaccinated (Table). Non-active component MHS beneficiary cases tended to be younger than controls. U.S.–Mexico border population civilian and MHS beneficiary data were collected from 30 Sept. 2018 through 15 Feb. 2019, during which time 13% of 251 cases and 27% of 1,185 controls were vaccinated. Border population and MHS beneficiary cases tended to be younger than controls. Active component service member data were collected from 1 Dec. 2018 through 16 Feb. 2019, and 92% of 1,594 cases and 91% of 2,548 controls were vaccinated. In the active component service member group, controls tended to be younger than cases.

As shown in the Table and Figure, adjusted VE for all influenza types for non-active component MHS beneficiaries was 47% (95% CI: 35–57), indicating moderate protection against influenza infection. For active component service members, adjusted VE for all influenza types was low, at 13% (95% CI: -11–32). For all influenza A, adjusted VE for non-active component MHS beneficiaries was 48% (95% CI: 36–58), VE for U.S.–Mexico border population civilians and MHS beneficiaries was 58% (95% CI: 38–72), and VE for active component service members was 12% (95% CI: -13–31). For influenza A(H1N1), adjusted VE for non-active component MHS beneficiaries was 57% (95% CI: 44–68), VE for U.S.–Mexico border population civilians and MHS beneficiaries was 65% (95% CI: 46–77), and VE for active component service members was 34% (95% CI: -19–64). Influenza A(H3N2) was not detected in high enough proportions in most populations to calculate VE, but for non-active component MHS beneficiaries, adjusted VE was 36% (95% CI: 14–53), indicating low-to-moderate protection. Similarly, influenza B was not detected in high enough proportions in most populations early in the 2018–2019 season to calculate VE; however, for active component service members, adjusted VE was 25% (95% CI: -8–48), indicating low protection.

Editorial Comment

The DOD laboratories and partners conducting respiratory infection surveillance provide a valuable global perspective and capability. Monitoring global trends, particularly for influenza, provides situational awareness for DOD leaders and informs current and future operation risk assessments and recommendations for preventive measures. This surveillance also facilitates sample sharing and further collaboration with WHO and CDC.

In general, for civilian populations, influenza vaccination provided moderate protection against infection, and DOD-generated VE estimates of non-service member beneficiaries and select civilian populations were similar to CDC estimates for the same time frame. CDC reported that adjusted VE for all influenza types was 47%, adjusted VE for influenza A(H1N1) was 46%, and adjusted VE for influenza A(H3N2) was 44%.4 In CDC and DOD analyses, protection was greater for influenza A(H1N1) than influenza A(H3N2). However, for active component service members, adjusted VE estimates were much lower, though not statistically significant. This difference may be partially attributable to the requirement for annual influenza vaccination and the resulting high proportion of vaccination in this population. The effect is demonstrated by the case and control populations having nearly identical vaccination rates. The high vaccination rate makes it difficult to design a strong epidemiological study of VE in this population. Other factors, such as the requirement for service members to receive the vaccination annually, which may have biological effects such as attenuated immune response due to repeated exposures, may also impact the VE estimates. The timing of vaccination could also impact the VE estimates since service members typically receive the vaccine early in the influenza season or just before it starts. These factors should also be considered as potential contributors to the low VE estimates for the active component service members.

One important limitation of this study is potential non-differential misclassification of vaccination status due to poor recall on the self-reported questionnaire or documentation errors in the EHR. Also, the analyses did not assess vaccine impact on less severe cases of influenza since the VE estimates only include medically attended patients, and the populations studied are younger than the U.S. general population, which may reduce generalizability. More work, potentially using new methodologies, is needed to accurately estimate the vaccine's effect on reducing the influenza burden in active component service members and to determine the impact of repeat vaccinations on immune response to the vaccine or subsequent influenza exposures. Additional data and analyses in these areas would fill knowledge gaps and inform a more robust military influenza vaccination policy.

Author affiliations: Defense Health Agency, Armed Forces Health Surveillance Branch, Silver Spring, MD (Ms. Lynch, CDR Scheckelhoff, Dr. Eick-Cost, Ms. Hu, Ms. Johnson); General Dynamics Information Technology, Fairfax, VA (Ms. Lynch, Ms. Johnson); Defense Health Agency, Armed Forces Health Surveillance Branch-Air Force satellite, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH (Mr. Coleman, Ms. DeMarcus, Lt Col Federinko); STS Systems Integration, LLC, San Antonio, TX (Mr. Coleman, Ms. DeMarcus); Cherokee Nation Technologies, Tulsa, OK (Dr. Eick-Cost, Ms. Hu); Naval Health Research Center, San Diego, CA (Mr.Hansen, LCDR Graf, Dr. Myers); Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD (Mr. Hansen)

Acknowledgments: The authors thank the Department of Defense Global Respiratory Pathogen Surveillance Program and its sentinel site partners, the Navy and Marine Corps Public Health Center, and the Centers for Disease Control and Prevention's Binational Border Infectious Disease Surveillance Program in San Diego and Imperial Counties, CA, which collected samples and case data from participating outpatient clinics.

Disclaimer: Authors include military service members or employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person's official duties.

Report No. 19-39 was supported by the Armed Forces Health Surveillance Branch's Global Emerging Infections Surveillance section under work unit no. 60805. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of the Air Force, Department of Defense, or the U.S. Government.

The study protocol was approved by the Naval Health Research Center Institutional Review Board in compliance with all applicable Federal regulations governing the protection of human subjects. Research data were derived from an approved Naval Health Research Center Institutional Review Board protocol number NHRC.2007.0024.

References

  1. Sanchez JL, Cooper MJ, Myers CA, et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev. 2015;28(3):743–800.
  2. Armed Forces Health Surveillance Branch. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(5):2–10.
  3. Armed Forces Health Surveillance Branch. Ambulatory visits, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(5):19–25.
  4. Doyle JD, Chung JR, Kim SS, et al. Interim estimates of 2018–19 seasonal influenza vaccine effectiveness–United States, Feb. 2019. MMWR Morb Mortal Wkly Rep. 2019;68(6)135–139.

DoD midseason influenza VE estimates, 2018–2019

DoD midseason influenza VE, 2018–2019

You also may be interested in...

MSMR Vol. 29 No. 10 - October 2022

Report
10/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Update: Contraception Among Active Component Service Women, U.S. Armed Forces, 2017–2021

Article
10/1/2022
JOINT BASE SAN ANTONIO-FORT SAM HOUSTON, Texas (Oct. 20, 2021) -- Brooke Army Medical Center now offers female service members a walk-in clinic for contraception on Wednesdays from noon to 2 p.m. in the Adolescent and Young Adult Medicine Clinic at the CPT Jennifer M. Moreno Clinic.

This report summarizes the annual prevalence of permanent sterilization, as well as use of long- and short-acting reversible contraceptives (LARCs and SARCs, respectively), contraceptive counseling services, and use of emergency contraceptives from 2017 through 2021 among active component U.S. service women.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2017–April 2022

Article
10/1/2022
Carl R. Darnall Army Medical Center, Fort Hood, Texas, Capt Claireisa Spencer prepares to administer a flu vaccine to a Fort Hood Army Exchange customer during CRDAMC’s celebration of National Influenza Vaccination Week.

Immunization Among U.S. Armed Forces Healthcare Workers

Recommended Content:

Medical Surveillance Monthly Report

Viral hepatitis C, active component, U.S. Armed Forces, 2011–2020

Article
10/1/2022
The Armed Services Blood Program (ASBP) is the official blood program of the U.S. military. It is a joint operation that collects, tests, stores, transports and distributes blood products to military locations around the world, wherever and whenever it’s needed most.

This study reports updated numbers and incidence rates of hepatitis C virus (HCV) infection among active component members of the U.S. military using a revised case definition during a 10-year surveillance period between 2011 and 2020.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 09 - September 2022

Report
9/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Letter to the Editor: Clarification of Hepatitis C Virus Screening with Case Definitions and Prevalence Among Trainees

Article
9/1/2022
ALBANY, Ga. (May 11, 2022) - Hospital Corpsman 2nd Class Leeanna Grzemski, a lab technician at Naval Branch Health Clinic Albany, takes a blood sample. Grzemski, a native of Weatherford, Texas, says, “Best part of my job is meeting and interacting with our patients.” (U.S. Navy photo by Deidre Smith, Naval Hospital Jacksonville/Released).

We read with interest the brief report regarding the prevalence of Hepatitis C Virus (HCV) infection in basic military trainee blood donors by Kasper and colleagues in the November 2021 issue of the Medical Surveillance Monthly Report (MSMR),1 an update of a previous similar report

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, U.S. Armed Forces, Active and Reserve Components, January 2017–June 2022

Article
9/1/2022
NAVAL MEDICAL CENTER CAMP LEJEUNE, North Carolina - As the leading petty officer for Naval Medical Center Camp Lejeune's Community Health Clinic, HM2 Kameron Jacobs is part of the first satellite team to treat service members living with HIV.

This report provides an update through June 2022 of routine screening results for antibodies to the human immunodeficiency virus (HIV) among members of the active and reserve components of the U.S. Armed Forces. During the full 5 and 1/2-year surveillance period, the HIV seropositivity rates for active component service members were 0.21 positives per 1,000 members of the Army, 0.24 for the Navy, 0.16 for the Marine Corps, and 0.14 for the Air Force.

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of the MSMR Surveillance Case Definition for Incident Cases of Hepatitis C

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Angel Alvarado, a combat graphics specialist, donates blood for the Armed Services Blood Program (ASBP).

The validity of military hepatitis C virus (HCV) surveillance data is uncertain due to the potential for misclassification introduced when using administrative databases for surveillance purposes. The objectives of this study were to assess the validity of the surveillance case definition used by the Medical Surveillance Monthly Report (MSMR) for HCV, the over and underestimation of cases from surveillance data, and the true burden of HCV disease in the U.S. military.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Menstrual Suppression Among U.S. Female Service Members in the Millennium Cohort Study

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Bobby Brodeur, a Gilford, New Hampshire, native and machine gunner with 3rd Battalion, 6th Marine Regiment, 2d Marine Division, conducts gun drills at Camp Lejeune, North Carolina, Oct. 13, 2022. Brodeur is currently serving as a machine gunner with 3/6 and is one of three female infantry Marines in Kilo Co. She has demonstrated an unwavering commitment to 3/6 through her high physical fitness scores and leading by example within the platoon. (U.S. Marine Corps photo by Lance Cpl. Megan Ozaki)

Menstrual suppression allows for the control or complete suppression of menstrual periods through hormonal contraceptive methods. In addition to preventing pregnancy, suppression can alleviate medical conditions and symptoms associated with menstruation such as iron deficiency anemia,1 eliminate logistical hygiene-related challenges, and improve quality of life.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 08 - August 2022

Report
8/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Medical Surveillance Monthly Report

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

Article
8/1/2022
U.S. Air Force Capt. Hopkins, 351st Special Warfare Training Squadron, Instructor Flight commander and Chief Combat Rescue Officer (CRO) instructor, conducts a military free fall equipment jump from a DHC-4 Caribou aircraft in Coolidge, Arizona, July 17, 2021. Hopkins is recognized as the 2020 USAF Special Warfare Instructor Company Grade Officer of the Year for his outstanding achievement from January 1 to December 31, 2020.

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and resources for the Department of Defense.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

Article
8/1/2022
U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including physical, psychologi­cal, and neurological issues.

Recommended Content:

Medical Surveillance Monthly Report

Prevalence and Distribution of Refractive Errors Among Members of the U.S. Armed Forces and the U.S. Coast Guard, 2019.

Article
8/1/2022
Ophthamologist Air Force Maj. Thuy Tran evaluates a patient during an eye exam. (U.S. Air Force photo by Tech. Sgt. John Hughel)

During calendar year 2019, the estimated prevalence of myopia, hyperopia, and astigmatism were 17.5%, 2.1%, and 11.2% in the active component of the U.S. Armed Forces and 10.1%, 1.2%, and 6.1% of the U.S. Coast Guard, respectively.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Trends for SARS-CoV-2 and Other Respiratory Pathogens Among U.S. Military Health System Beneficiaries, 27 September 2020–2 October 2021.

Article
7/1/2022
Staff Sgt. Misty Poitra and Senior Airman Chris Cornette, 119th Medical Group, collect throat swabs during voluntary COVID-19 rapid drive-thru testing for members of the community while North Dakota Army National Guard Soldiers gather test-subject data in the parking lot of the FargoDome in Fargo, N.D., May 3, 2020. The guardsmen partnered with the N.D. Department of Health and other civilian agencies in the mass-testing efforts of community volunteers. (U.S. Air National Guard photo by Chief Master Sgt. David H. Lipp)

Respiratory pathogens, such as influenza and adenovirus, have been the main focus of the Department of Defense Global Respiratory Pathogen Surveillance Program (DoDGRPSP) since 1976.1. However, DoDGRPSP also began focusing on SARS-CoV-2 when COVID-19 was declared a pandemic illness in early March 2020.2. Following this declaration, the DOD quickly adapted and organized its respiratory surveillance program, housed at the U.S. Air Force School of Aerospace Medicine (USAFSAM), in response to this emergent virus.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Phase I Results Using the Virtual Pooled Registry Cancer Linkage System (VPR-CLS) for Military Cancer Surveillance.

Article
7/1/2022
A patient at Naval Hospital Pensacola prepares to have a low-dose computed tomography test done to screen for lung cancer. Lung cancer is the leading cause of cancer-related deaths among men and women. Early detection can lower the risk of dying from this disease. (U.S. Navy photo by Jason Bortz)

The Armed Forces Health Surveillance Division, as part of its surveillance mission, periodically conducts studies of cancer incidence among U.S. military service members. However, service members are likely lost to follow-up from the Department of Defense cancer registry and Military Health System data sets after leaving service and during periods of time not on active duty.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14
Refine your search
Last Updated: November 02, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery