Back to Top Skip to main content

Brief Report: Department of Defense Midseason Estimates of Vaccine Effectiveness for the 2018–2019 Influenza Season

Adminstration of a seasonal flu vaccination. (U.S. Navy photo) Adminstration of a seasonal flu vaccination. (U.S. Navy photo)

Recommended Content:

Medical Surveillance Monthly Report

BACKGROUND

Military populations have historically been at high risk for acute respiratory infections, particularly training and deployed populations, who have living conditions that are often crowded and may be austere.1 Respiratory infections are responsible for over 300,000 medical encounters each year among U.S. active component service members, and the associated health care creates a substantial public health and economic burden on the Military Health System (MHS).1,2 Respiratory infections also account for approximately one-third of convalescence in quarters determinations and as such are a significant contributor to lost duty days.3 Viral respiratory pathogens are highly transmissible, and the specific types, trends, and risks often vary regionally and by setting.1 These variations are important for a globally dispersed force, as they inform risk assessments and ensure that proper preventive measures are implemented. Thus, the Department of Defense (DoD) conducts surveillance for respiratory infections both within the force and in other global populations. The Armed Forces Health Surveillance Branch’s (AFHSB) Global Emerging Infections Surveillance (GEIS) section supports a global surveillance program, executed primarily by DoD service laboratories, at approximately 400 locations in over 30 countries. Respiratory infection surveillance data are regularly shared with the World Health Organization (WHO) and the Centers for Disease Control and Prevention (CDC). Because of frequent genetic mutations and the associated pandemic potential, influenza is of particular interest to the DoD and is a major focus of these surveillance efforts. Because influenza vaccination is the primary preventive countermeasure, the seasonal influenza vaccine’s effectiveness is also closely monitored. Estimates of vaccine effectiveness (VE) are calculated twice annually: during the middle and at the end of the influenza season.

METHODS

Three sites produced VE estimates for the DoD at midseason. The U.S. Air Force School of Aerospace Medicine/AFHSB-Air Force (USAFSAM/AFHSBAF) satellite VE estimate was produced from sentinel site surveillance within non-active component MHS beneficiaries (retirees and family members) receiving care at military treatment facilities (MTFs). The Naval Health Research Center (NHRC) VE estimate was derived from sentinel site influenza surveillance within civilian populations at clinics near the U.S.–Mexico border and among MHS beneficiaries (service members, retirees, and family members) receiving care at MTFs. The AFHSB’s Epidemiology and Analysis (E&A) section VE estimate was derived from electronic health record (EHR) data from active component service members receiving care at MTFs.

For the 2018–2019 midseason, all 3 VE estimates were calculated using a test-negative case-control study design; crude and adjusted VE estimates, along with 95% confidence intervals (CIs), were calculated as (1 - odds ratio) x 100% and were obtained from multivariable logistic regression models. VE results were considered statistically significant if 95% CIs around VE estimates did not include zero.

USAFSAM/AFHSB-AF satellite’s analysis adjusted for age group, time of specimen collection, region, and sex. NHRC’s analysis adjusted for age group. AFHSB E&A’s analysis adjusted for age group, month of diagnosis, 5-year vaccination status as a dichotomous variable, and sex. Analyses were performed for influenza types and subtypes as available. Cases were laboratory confirmed as influenza positive, and controls were influenza test negative. At NHRC and USAFSAM/AFHSB-AF satellite, influenza positives were confirmed through reverse transcription polymerase chain reaction (RT-PCR) and/or viral culture. AFHSB also used these methods for confirmation and included positive rapid tests, but individuals with only a negative rapid test, without another confirmatory test result were excluded from calculation of VE. USAFSAM/AFHSB-AF satellite verified vaccination status through EHR and self-report data, E&A verified vaccination status through EHR data, and NHRC used self-reported vaccination data. Nearly all vaccinated active duty and beneficiary patients received the inactivated influenza vaccine.

RESULTS

Non-active component MHS beneficiary data were collected from 9 December 2018 through 16 February 2019. The analysis was restricted to this time period to provide a more accurate VE estimate, as earlier months of the influenza season are control-heavy. By the end of the surveillance period, 48% of 645 cases and 64% of 1,446 controls had been vaccinated (Table). Non-active component MHS beneficiary cases tended to be younger than controls. U.S.–Mexico border population civilian and MHS beneficiary data were collected from 30 September 2018 through 15 February 2019, during which time 13% of 251 cases and 27% of 1,185 controls were vaccinated. Border population and MHS beneficiary cases tended to be younger than controls. Active component service member data were collected from 1 December 2018 through 16 February 2019, and 92% of 1,594 cases and 91% of 2,548 controls were vaccinated. In the active component service member group, controls tended to be younger than cases.

As shown in the Table and Figure, adjusted VE for all influenza types for non-active component MHS beneficiaries was 47% (95% CI: 35–57), indicating moderate protection against influenza infection. For active component service members, adjusted VE for all influenza types was low, at 13% (95% CI: -11–32). For all influenza A, adjusted VE for non-active component MHS beneficiaries was 48% (95% CI: 36–58), VE for U.S.–Mexico border population civilians and MHS beneficiaries was 58% (95% CI: 38–72), and VE for active component service members was 12% (95% CI: -13–31). For influenza A(H1N1), adjusted VE for non-active component MHS beneficiaries was 57% (95% CI: 44–68), VE for U.S.–Mexico border population civilians and MHS beneficiaries was 65% (95% CI: 46–77), and VE for active component service members was 34% (95% CI: -19–64). Influenza A(H3N2) was not detected in high enough proportions in most populations to calculate VE, but for non-active component MHS beneficiaries, adjusted VE was 36% (95% CI: 14–53), indicating low-to-moderate protection. Similarly, influenza B was not detected in high enough proportions in most populations early in the 2018–2019 season to calculate VE; however, for active component service members, adjusted VE was 25% (95% CI: -8–48), indicating low protection.

EDITORIAL COMMENT

The DoD laboratories and partners conducting respiratory infection surveillance provide a valuable global perspective and capability. Monitoring global trends, particularly for influenza, provides situational awareness for DoD leaders and informs current and future operation risk assessments and recommendations for preventive measures. This surveillance also facilitates sample sharing and further collaboration with WHO and CDC.

In general, for civilian populations, influenza vaccination provided moderate protection against infection, and DoD-generated VE estimates of non-service member beneficiaries and select civilian populations were similar to CDC estimates for the same time frame. CDC reported that adjusted VE for all influenza types was 47%, adjusted VE for influenza A(H1N1) was 46%, and adjusted VE for influenza A(H3N2) was 44%.4 In CDC and DoD analyses, protection was greater for influenza A(H1N1) than influenza A(H3N2). However, for active component service members, adjusted VE estimates were much lower, though not statistically significant. This difference may be partially attributable to the requirement for annual influenza vaccination and the resulting high proportion of vaccination in this population. The effect is demonstrated by the case and control populations having nearly identical vaccination rates. The high vaccination rate makes it difficult to design a strong epidemiological study of VE in this population. Other factors, such as the requirement for service members to receive the vaccination annually, which may have biological effects such as attenuated immune response due to repeated exposures, may also impact the VE estimates. The timing of vaccination could also impact the VE estimates since service members typically receive the vaccine early in the influenza season or just before it starts. These factors should also be considered as potential contributors to the low VE estimates for the active component service members.

One important limitation of this study is potential non-differential misclassification of vaccination status due to poor recall on the self-reported questionnaire or documentation errors in the EHR. Also, the analyses did not assess vaccine impact on less severe cases of influenza since the VE estimates only include medically attended patients, and the populations studied are younger than the U.S. general population, which may reduce generalizability. More work, potentially using new methodologies, is needed to accurately estimate the vaccine’s effect on reducing the influenza burden in active component service members and to determine the impact of repeat vaccinations on immune response to the vaccine or subsequent influenza exposures. Additional data and analyses in these areas would fill knowledge gaps and inform a more robust military influenza vaccination policy.

 

Author affiliations: Defense Health Agency, Armed Forces Health Surveillance Branch, Silver Spring, MD (Ms. Lynch, CDR Scheckelhoff, Dr. Eick-Cost, Ms. Hu, Ms. Johnson); General Dynamics Information Technology, Fairfax, VA (Ms. Lynch, Ms. Johnson); Defense Health Agency, Armed Forces Health Surveillance Branch-Air Force satellite, U.S. Air Force School of Aerospace Medicine, Wright-Patterson Air Force Base, OH (Mr. Coleman, Ms. DeMarcus, Lt Col Federinko); STS Systems Integration, LLC, San Antonio, TX (Mr. Coleman, Ms. DeMarcus); Cherokee Nation Technologies, Tulsa, OK (Dr. Eick-Cost, Ms. Hu); Naval Health Research Center, San Diego, CA (Mr.Hansen, LCDR Graf, Dr. Myers); Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD (Mr. Hansen)

Acknowledgments: The authors thank the Department of Defense Global Respiratory Pathogen Surveillance Program and its sentinel site partners, the Navy and Marine Corps Public Health Center, and the Centers for Disease Control and Prevention’s Binational Border Infectious Disease Surveillance Program in San Diego and Imperial Counties, CA, which collected samples and case data from participating outpatient clinics.

Disclaimer: Authors include military service members or employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C. §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C. §101 defines a U.S. Government work as work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties.

Report No. 19-39 was supported by the Armed Forces Health Surveillance Branch’s Global Emerging Infections Surveillance section under work unit no. 60805. The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of the Air Force, Department of Defense, or the U.S. Government.

The study protocol was approved by the Naval Health Research Center Institutional Review Board in compliance with all applicable Federal regulations governing the protection of human subjects. Research data were derived from an approved Naval Health Research Center Institutional Review Board protocol number NHRC.2007.0024.

 

REFERENCES

1. Sanchez JL, Cooper MJ, Myers CA, et al. Respiratory infections in the U.S. military: recent experience and control. Clin Microbiol Rev. 2015;28(3):743–800.

2. Armed Forces Health Surveillance Branch. Absolute and relative morbidity burdens attributable to various illnesses and injuries, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(5):2–10.

3. Armed Forces Health Surveillance Branch. Ambulatory visits, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(5):19–25.

4. Doyle JD, Chung JR, Kim SS, et al. Interim estimates of 2018–19 seasonal influenza vaccine effectiveness–United States, February 2019. MMWR Morb Mortal Wkly Rep. 2019;68(6)135–139.

 

DoD midseason influenza VE estimates, 2018–2019

DoD midseason influenza VE, 2018–2019

You also may be interested in...

Cases of Coronavirus Disease 2019 and Comorbidities Among Military Health System Beneficiaries, 1 January 2020 through 30 September 2020

Article
12/1/2020
1-6179898: A U.S. Army nurse paratrooper assigned to the 173rd Brigade Support Battalion, 173rd Airborne Brigade provides patient care in support of preventative efforts against COVID-19 on Caserma Del Din, Italy, April 20, 2020. The 173rd Airborne Brigade is the U.S. Army's Contingency Response Force in Europe, providing rapidly deployable forces to the United States Europe, Africa and Central Command areas of responsibility. Forward deployed across Italy and Germany, the brigade routinely trains alongside NATO allies and partners to build partnerships and strengthen the alliance. (U.S. Army photo by Spc. Ryan Lucas)

Recommended Content:

Medical Surveillance Monthly Report

SARS-CoV-2 and Influenza Coinfection in a Deployed Military Setting—Two Case Reports

Article
12/1/2020
4-2871: This illustration, created at the Centers for Disease Control and Prevention (CDC), reveals ultrastructural morphology exhibited by coronaviruses. Note the spikes that adorn the outer surface of the virus, which impart the look of a corona surrounding the virion, when viewed electron microscopically. A novel coronavirus, named Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2), was identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China in 2019. The illness caused by this virus has been named coronavirus disease 2019 (COVID-19). (Credit: Alissa Eckert, MSMI; Dan Higgins, MAMS)

Recommended Content:

Medical Surveillance Monthly Report

Air Evacuation of Service Members for COVID-19 in U.S. Central Command and U.S. European Command From 11 March 2020 Through 30 September 2020

Article
12/1/2020
3-3D_Influenza_blue_no_key_pieslice_med: This illustration provides a 3D graphical representation of a generic Influenza virion’s ultrastructure, and is not specific to a seasonal, avian or 2009 H1N1 virus. (Credit: CDC/ Douglas Jordan)

Recommended Content:

Medical Surveillance Monthly Report

Characteristics of U.S. Army Beneficiary Cases of COVID-19 in Europe, 12 March 2020–17 April 2020

Article
12/1/2020
2-200410-F-BT441-2099: Three U.S. Air Force medical Airmen exit a C-17 Globemaster III aircraft following the first-ever operational use of the Transport Isolation System at Ramstein Air Base, Germany, April 10, 2020. The TIS is an infectious disease containment unit designed to minimize contamination risk to aircrew and medical attendants, while allowing in-flight medical care for patients afflicted by a disease--in this case, COVID-19. (U.S. Air Force photo by Staff Sgt. Devin Nothstine)

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2015–June 2020

Article
11/1/2020
Chill factor, improper warm up, and inadequate clothing can contribute to the risk for cold injuries. Experts encourage everyone, whether acclimated to cold weather or not, to protect against cold temperature injuries this winter. (U.S. Marine Corps photo by Lance Cpl. Cody Rowe)

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2015–June 2020

Recommended Content:

Medical Surveillance Monthly Report

Fibromyalgia: Prevalence and Burden of Disease Among Active Component Service Fibromyalgia: Prevalence and Burden of Disease Among Active Component Service Members, U.S. Armed Forces, 2018

Article
11/1/2020
Back pain. Credit: iStock.com/Albina Gavrilovic

Recommended Content:

Medical Surveillance Monthly Report

Acute Respiratory Infections Among Active Component Service Members Who Use Combustible Tobacco Products and/or E-cigarette/Vaping Products, U.S. Armed Forces, 2018–2019

Article
11/1/2020
A Team Offutt Airman vapes in an authorized smoking area during a break Nov. 7. As of Oct. 29, 2019, over 1,800 lung injury cases and 37 deaths have been reported to the Centers for Disease Control and Prevention and the only commonality among all cases is the patient’s use of e-cigarette or vaping products. Offutt Airmen looking for support quitting can schedule an appointment with a behavioral health consultant or primary care manager by calling 402-232-2273. To schedule a unit briefing on the dangers of vaping and options for quitting, call 402-294-5977. Outside assistance, including text-message support, is available by visiting www.smokefree.gov, www.thetruth.com or www.ycq2.org.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Article
10/1/2020
NORFOLK (Oct. 15, 2019) Lt. Sipriano Marte administers an influenza vaccination to Airman Tyler French in the intensive care unit aboard the Wasp-class amphibious assault ship USS Kearsarge (LHD 3). Kearsarge is underway conducting routine training. (U.S. Navy photo by Mass Communication Specialist Petty Officer 3rd Class Jacob Vermeulen/Released)

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2015–April 2020

Recommended Content:

Medical Surveillance Monthly Report

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Article
10/1/2020
Istock 916163392 3D illustration of human body organs (pancreas).

Acute and Chronic Pancreatitis, Active Component, U.S. Armed Forces, 2004–2018

Recommended Content:

Medical Surveillance Monthly Report

Characterizing the Contribution of Chronic Pain Diagnoses to the Neurologic Burden of Disease, Active Component, U.S. Armed Forces, 2009–2018

Article
10/1/2020
Belgian Medical Component 1st Lt. Olivier, a physical therapist, adjusts the neck of a pilot from the 332nd Air Expeditionary Wing, June 22, 2017, in Southwest Asia. Aircrew from the 332nd AEW received treatment for pains associated with flying high performance aircraft through a partnership program with the Belgian Medical Component. (U.S. Air Force photo/Senior Airman Damon Kasberg)

Recommended Content:

Medical Surveillance Monthly Report

Update: Surveillance of Spotted Fever Rickettsioses at Army Installations in the U.S. Central and Atlantic Regions, 2012–2018

Article
9/1/2020
This photograph depicts a dorsal view of a female Gulf Coast tick, Amblyomma maculatum. This tick species is a known vector for Rickettsial organisms, Rickettsia parkeri, and Ehrlichia ruminantium, formerly Cowdria ruminantium. R. parkeri is a member of the spotted fever group of rickettsial diseases affecting humans, while E. ruminantium causes heartwater disease, an infectious, noncontagious, tick-borne disease of domestic, and wild ruminants, including cattle, sheep, goats, antelope, and buffalo. Note the considerably smaller scutum, or shield covering only a small region of its dorsal abdomen, unlike its male counterpart, an example of which can be seen in PHIL 10877, and 10878, which sports a scutum covering its entire dorsal abdomen. The smaller scutum in the female enables its abdomen to expand considerably, leading to an engorged appearance after ingesting its host blood meal. (Content provider: CDC/ Dr. Christopher Paddock)

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, Civilian Applicants for U.S. Military Service and U.S. Armed Forces, Active and Reserve Components, January 2015–June 2020

Article
9/1/2020
Spc. Jayson Sanchez of the Army Reserve’s 77th Sustainment Brigade receives a blood draw from phlebotomist Nikole Horrell during the mass medical-readiness event hosted Aug. 8-9, 2015 by the Army Reserve’s 99th Regional Support Command at Joint Base McGuire-Dix-Lakehurst, N.J., in an effort to increase Soldier readiness throughout the northeastern United States. More than 300 Army Reserve and Army National Guard Soldiers had the opportunity to take care of their Periodic Health Assessments, dental exams, vision screenings, HIV blood draws, immunizations, hearing tests, LOD processing and temporary/permanent profiles during the event. (U.S. Army photo by Sgt. Salvatore Ottaviano, 99th Readiness Division)

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Inguinal Hernia and Repair Procedures and Rate of Subsequent Pain Diagnoses, Active Component Service Members, U.S. Armed Forces, 2010–2019

Article
9/1/2020
Senegalese and Vermont National Guard medical care professionals repair a hernia at the Hopital de la Paix in Ziguinchor, Senegal, Feb. 14, 2018. Vermont Guardsmen work alongside Senegalese medical personnel to obtain real-world experience while providing valuable medical services as part of a Medical Readiness Training Exercise. (U.S. Army National Guard photo by Sgt. Avery Cunningham)

Recommended Content:

Medical Surveillance Monthly Report

DHA recognizes 25 years of AFHSB's health surveillance journal

Article
8/12/2020
Medical technicians wearing masks and entering information on a computer

25 Years of Surveillance Reporting in Monthly Journal

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Article
8/1/2020
This is a medical illustration of drug-resistant, Shigella sp. bacteria, presented in the Centers for Disease Control and Prevention (CDC) publication entitled, Antibiotic Resistance Threats in the United States, 2019 (Content provider: CDC/Antibiotic Resistance Coordination and Strategy Unit; Photo credit:  CDC/Stephanie Rossow).

Commentary: The Limited Role of Vaccines in the Prevention of Acute Gastroenteritis

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 12

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.