Skip to main content

Military Health System

The Prevalence of Attention-Deficit/Hyperactivity Disorder (ADHD) and ADHD Medication Treatment in Active Component Service Members, U.S. Armed Forces, 2014–2018

Image of New Recruits are screened after arriving at Depot. New Recruits with Golf Company, 2nd Recruit Training Battalion, are screened after arriving at Marine Corps Recruit Depot, San Diego, Dec. 28, 2020. As recruits arrive to the depot in the future, they will enter a staging period of 14 days during which they will be medically screened, monitored, and provided classes to prepare and orient them to begin recruit training. All of this will occur before they step onto our iconic yellow footprints and make that memorable move toward earning the title Marine. Current planning and execution remain fluid as the situation continues to evolve. The health and well-being of our recruits, recruiting and training personnel, and their families remain our primary concerns. All recruits will be screened and tested for COVID-19 prior to beginning recruit training. (U.S. Marine Corps photo by Lance Cpl. Grace J. Kindred)

Recommended Content:

Medical Surveillance Monthly Report

Background

Attention-deficit/hyperactivity disorder (ADHD) is a common diagnosis in childhood, characterized by persistent impairing inattention, hyperactivity, and impulsivity with symptoms recognized in patients before age 12.1 Since ADHD is the most common pediatric neurodevelopmental disorder diagnosed in the U.S., this condition has readiness and force health importance to the Department of Defense (DOD), and its high prevalence in the adolescent and adult civilian population affects the pool of military applicants.2 Current DOD accession policy lists ADHD as disqualifying for military applicants if they meet any of the following conditions: ADHD medication prescribed in the previous 24 months, an educational plan or work accommodation after age 14, a history of comorbid mental health disorders, or documentation of adverse academic, occupational, or work performance.3

The prevalence of ADHD in U.S. children aged 2–17 is estimated to range from 9–11% with approximately two-thirds of children with ADHD having at least 1 other mental, emotional, or behavioral disorder.4 In 2016, U.S. surveillance data revealed that 62% of children diagnosed with ADHD currently take medication for the condition.5 Although symptoms can resolve after childhood, the most recent estimate of overall prevalence of adult ADHD in the U.S. is 4.4%.4 Unpublished data from an analysis conducted using Defense Medical Surveillance System (DMSS) data, demonstrated annual ADHD prevalence estimates ranging from 1.7–3.7% in the active component from 2000–2016 with a peak prevalence in 2011 (E. T. Reeves, MD, unpublished data, 2017). Although patients with ADHD are more likely to have comorbid mood, anxiety, and substance use disorders,4,6–8 patients receiving ADHD medications may be protected from the development of these associated mental health conditions.9,10

The last major change to DOD accession policy standards for ADHD occurred in 2010 and resulted in more restrictive requirements (no medications for more than 24 months cumulative after age 14 instead of the previous requirement of no medications within 12 months of enlistment). Although services can accept applicant waivers with less stringent restrictions (e.g., the Air Force will consider waivers for recruits stable off medications for 15 months), ADHD diagnosis is consistently a common disqualifier for military service. In 2017, ADHD and disruptive behavior disorders were the fifth most frequent medical disqualification of first-time enlisted active component military applicants.11 Although previous studies have evaluated the impact of ADHD on retention rates2 (also E. T. Reeves, MD, unpublished data, 2017) and its association with post-traumatic stress disorder (PTSD),6,8 no surveillance data have been published on recent estimates of the prevalence of ADHD diagnoses in active component military personnel or on what proportion of active component service members with ADHD are dispensed ADHD medications. The primary objectives of this study were to determine the prevalence of ADHD diagnoses among active component service members from 2014 through 2018 and the proportion of these service members who were prescribed medications to treat the condition.

Methods

This descriptive study utilized a surveillance period from 1 January 2014 through 31 December 2018. The surveillance population included any member of the Army, Navy, Air Force, or Marine Corps who served in the active component at any point during the surveillance period. All data used to identify prevalent cases of ADHD were derived from records routinely stored in the DMSS, which is maintained by the Armed Forces Health Surveillance Division (AFHSD). DMSS includes medical encounter data (e.g., outpatient visits, hospitalizations) of active component members of the U.S. Armed Forces in military and civilian (if reimbursed through the Military Health System) treatment facilities. The DMSS also includes medical screening data from Military Entrance Processing Stations (MEPS) and records of prescribed and dispensed medications from the Pharmacy Data Transaction Service (PDTS) which were also included in this analysis.

For surveillance purposes, an ADHD case was defined as a qualifying ADHD diagnosis in the first or second diagnostic position for diagnoses assigned during MEPS medical screening; or 1 hospitalization with any of the qualifying diagnoses of ADHD in the first or second diagnostic position; or 2 outpatient medical encounters within 180 days of each other, with any of the defining diagnoses of ADHD in the first or second diagnostic position; or 1 outpatient/TMDS medical encounter in a psychiatric or mental health specialty care setting, identified by a Medical Expense and Performance Reporting System (MEPRS) code beginning with 'BF', with a qualifying diagnosis of ADHD in the first or second diagnostic position. The International Classification of Diseases, 9th Revision (ICD-9) and International Classification of Diseases, 10th Revision (ICD-10) codes used to identify ADHD cases included all those falling under the parent codes 314 and F90, respectively.

Individuals with a diagnosis of ADHD at any time during the surveillance period were assumed to be prevalent cases at the time of accession regardless of when they were formally diagnosed, since the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5) requires the presence of symptoms prior to age 12 to meet the diagnostic criteria for ADHD.1 

To qualify as treated for ADHD, service members had to have a PDTS record documenting that they had been dispensed an FDA-licensed drug for the treatment of ADHD at least twice within 6 months (181 days) which is consistent with previous research.10 Active component service members dispensed ADHD medication with longer gaps than this threshold were classified as untreated. Medications used for the treatment of ADHD included stimulants (amphetamines, methylphenidates), guanfacine (Intuniv), clonidine (Kapvay), and atomoxetine (Strattera). Table 1 presents a comprehensive list of ADHD medications used in the current analysis.

Crude annual prevalence of ADHD in the active component of the military during 2014–2018 were calculated and reported as percentages. In these calculations, the numerator was the number of prevalent cases of ADHD in active component service members and the denominator included all active component service members in service as of 30 June in the specified year. The proportion of active component service members diagnosed with ADHD who had been dispensed ADHD medication as defined above was calculated. Service members for whom ADHD medication was dispensed (treated) and those for whom ADHD medication was not dispensed (untreated) were compared on several background variables (i.e., sex, age group, race/ethnicity group, education level, marital status, branch of service, rank/grade, and military occupation) using chi-square tests. All analyses were conducted using SAS/STAT software, version 9.4 (2014, SAS Institute, Cary, NC).

Results

During the 5-year surveillance period, the crude annual ADHD prevalence among the active component declined from 3.9% in 2014 (n=58,691) to 2.8% in 2018 (n=41,338) (Figure 1). Compared to their respective counterparts, service members with less than a high school education, those who were divorced or widowed, non-Hispanic whites, Army members, senior enlisted members, and those in healthcare occupations had higher overall prevalence rates of ADHD. Females and males had similar annual and overall prevalence estimates (Figure 2, Table 2). Junior enlisted (E1–E4) service members trended down from the group with the second highest prevalence in 2014 to the group with the lowest prevalence in 2018 (Table 2, Figure 3).

The proportion of prevalent ADHD cases who were prescribed ADHD medication during the surveillance period was 60.2%. During the surveillance period, the majority of medications prescribed were stimulants alone (78.9–79.6%) compared to combined stimulant and non-stimulant (16.5–17.4%) or non-stimulant only (3.6%–3.9%) regimens (Figure 4). ADHD patients were more likely to be dispensed medication if they were older than 25 years of age, above junior enlisted rank (E1–E4), divorced/widowed, or in a healthcare occupation (Table 3).

Editorial Comment

This report documents the prevalence and medication trends of ADHD among the active component service members during 2014–2018. Previous unpublished data on crude annual ADHD prevalence in the active component prior to 2014 revealed that a peak prevalence occurred in 2011 (E. T. Reeves, MD, unpublished data, 2017). The current study demonstrated a continued decline in the crude annual prevalence of ADHD in the military since the ADHD accession medical standard became more restrictive in 2010, particularly among junior enlisted (E1–E4) service members whose crude annual ADHD prevalence was lower than all other rank groups in 2018. In contrast, national adult ADHD prevalence rose during this same timeframe.12 The current study demonstrated a continued decline in the crude annual prevalence of ADHD in the military since the ADHD accession medical standard became more restrictive in 2010, particularly among junior enlisted (E1–E4) service members whose crude annual ADHD prevalence was lower than all other rank groups in 2018. In contrast, national adult ADHD prevalence rose during this same timeframe.12

The ADHD population in the DOD differs from that in the U.S. civilian population on several key demographic characteristics. Female and male service members have similar prevalences whereas adult males are approximately twice as likely to be diagnosed with ADHD compared to females in the U.S. civilian population.4,5,13 Possible explanations for this finding include that the true ADHD prevalence in males and females may be more similar than previous research has suggested when performing comparable occupations or indicates that males with ADHD may have characteristics (such as more recent medication use) selecting them to be disqualified from the military enlistment process at higher rates than females. Additionally, annual ADHD prevalences among service members in healthcare occupations were consistently more than 2 times the prevalences of those in other occupations. The reasons for this difference are unknown but may reflect better access to care, more knowledge about ADHD and treatment options, greater acceptance by coworkers, and/or less physical exertion-based/more sedentary jobs compared to other military occupations.

Medication dispensed for ADHD in the military (60%) represents a proportion similar to that in the U.S. civilian population (62%).4,14 These data and the distribution of medication for ADHD patients should be informative for commanders and providers. For example, stimulant medication, as a controlled substance, can only be prescribed for 3 months at a time, which complicates the deployment readiness of service members with ADHD.

Several limitations should be considered when interpreting the results of this study. The current study used data on medications dispensed to active component service members through PDTS, but the medication adherence of these patients could not be assessed. Furthermore, patients with ADHD in this study could have been prescribed the medications for other medical conditions (FDA approved indications or off-label use) or have obtained medications by other means without a prescription. Observational studies are subject to bias. For example, the (e.g., more severe symptoms or comorbid diseases) from the population of ADHD patients without medication. Diagnostic data were derived from coded medical encounters, including medical examination at MEPS, according to standardized health surveillance case definitions; however, this method may underestimate the prevalence of ADHD, especially in service members not actively being treated with medication for ADHD or who were deliberately withholding information related to prior ADHD diagnosis at MEPS assessment (i.e., misclassification bias). The earliest year of data collection was 2014 because of the inability to link to pharmacy data prior to that year. 

In conclusion, this study found a decreasing trend in crude annual ADHD prevalence in the active component from 2014–2018. In terms of military readiness, a decrease in prevalence lessens the demand on commanders and medical practitioners to make decisions about whether or not ADHD is a waiverable condition for deployments; however, this must be balanced with the effects that a strict ADHD accession policy has on limiting the pool of military applicants. Continued research and discussions should focus on the optimal ADHD accession military standard. Future studies should evaluate the impact of deployment on ADHD patients, the high prevalence of ADHD in healthcare occupations, and differences among service members with ADHD accessed to the military through various methods (i.e., MEPS, waivers, withholding the diagnosis, new ADHD diagnosis).

Author Affiliations: Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Maj Sayers); Defense Health Agency, Armed Forces Health Surveillance Division (Ms. Zhu, Dr. Clark).

Disclaimer: The views expressed herein are those of the authors and do not necessarily reflect official policy or position of Uniformed Services University of the Health Sciences, the Department of Defense, or Departments of the Army, Navy, or Air Force.

References

  1. American Psychiatric Association. Attention deficit and disruptive behavior disorders. In: Diagnostic and Statistical Manual of Mental Disorders. 5th ed (DSM-5). Arlington, VA: American Psychiatric Association; 2013.
  2. Krauss MR, Russell RK, Powers TE, Li L. Accession standards for attention-deficit/hyperactivity disorder: a survival analysis of military recruits, 1995–2000. Mil Med. 2006;171(2):99-102. 
  3. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6130.03. Medical Standards for Appointment, Enlistment, or Induction in the Military Services. 6 May 2018.
  4. Centers for Disease Control and Prevention. Data and Statistics About ADHD. https://www.cdc.gov/ncbddd/adhd/data.html. Accessed 5 September 2019.
  5. Danielson ML, Bitsko RH, Ghandour RM, Holbrook JR, Kogan MD, Blumberg SJ. Prevalence of parent-reported ADHD diagnosis and associated treatment among US children and adolescents, 2016. J Clin Child Adolesc Psychol.2018;47(2):199–212. 
  6. Howlett JR, Campbell-Sills L, Jain S, et al. Attention deficit hyperactivity disorder and risk of posttraumatic stress and related disorders: A prospective longitudinal evaluation in US Army soldiers. J Trauma Stress. 2018;31(6):909–918.
  7. Spencer AE, Faraone SV, Bogucki OE, et al. Examining the association between posttraumatic stress disorder and attention-deficit/hyperactivity disorder: a systematic review and meta-analysis. J Clin Psychiatry. 2016;77(1):72–83.
  8. Ivanov I, Yehuda R. Optimizing fitness for duty and post-combat clinical services for military personnel and combat veterans with ADHD—a systematic review of the current literature. Europ J Psychotraumatol.2014;5(1):23894.
  9. Biederman J, DiSalvo M, Fried R, Woodworth KY, Biederman I, Faraone SV. Quantifying the protective effects of stimulants on functional outcomes in attention-deficit/hyperactivity disorder: A focus on number needed to treat statistic and sex effects. J Adolesc Health. 2019;65(6):784–789.
  10. Chang Z, D’Onofrio BM, Quinn PD, Lichtenstein P, Larsson H. Medication for attention-deficit/hyperactivity disorder and risk for depression: a nationwide longitudinal cohort study. Biol Psychiatry. 2016;80(12):916–922. 
  11. Department of Defense. Accession Medical Standards Analysis and Research Activity Annual Report 2018. Silver Spring, MD: Statistics and Epidemiology Branch, Walter Reed Army Institute of Research; 2018.
  12. Chung W, Jiang S-F, Paksarian D, et al. Trends in the prevalence and incidence of attention-deficit/hyperactivity disorder among adults and children of different racial and ethnic groups. JAMA NetwOpen. 2019;2(11):e1914344.
  13. Kessler RC, Adler L, Barkley R, et al. The prevalence and correlates of adult ADHD in the United States: results from the National Comorbidity Survey Replication. Am J Psychiatry. 2006;163(4):716–723.
  14. Danielson ML, Visser SN, Chronis-Tuscano A, DuPaul GJ. A national description of treatment among United States children and adolescents with attention-deficit/hyperactivity disorder. J Pediatr. 2018;192:240–246.e1.
FIGURE. Exertional rhabdomyolysis counts, by calendar year and sickle cell trait status, active component, U.S. Air Force, 2009–2018 (n=377)
TABLE. Serum chemistry findings associated with exertional rhabdomyolysis events, by sickle cell trait status, active component, U.S. Air Force, 2009–2018

You also may be interested in...

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2017–April 2022

Article
10/1/2022
Carl R. Darnall Army Medical Center, Fort Hood, Texas, Capt Claireisa Spencer prepares to administer a flu vaccine to a Fort Hood Army Exchange customer during CRDAMC’s celebration of National Influenza Vaccination Week.

Immunization Among U.S. Armed Forces Healthcare Workers

Recommended Content:

Medical Surveillance Monthly Report

Viral hepatitis C, active component, U.S. Armed Forces, 2011–2020

Article
10/1/2022
The Armed Services Blood Program (ASBP) is the official blood program of the U.S. military. It is a joint operation that collects, tests, stores, transports and distributes blood products to military locations around the world, wherever and whenever it’s needed most.

This study reports updated numbers and incidence rates of hepatitis C virus (HCV) infection among active component members of the U.S. military using a revised case definition during a 10-year surveillance period between 2011 and 2020.

Recommended Content:

Medical Surveillance Monthly Report

Update: Contraception Among Active Component Service Women, U.S. Armed Forces, 2017–2021

Article
10/1/2022
JOINT BASE SAN ANTONIO-FORT SAM HOUSTON, Texas (Oct. 20, 2021) -- Brooke Army Medical Center now offers female service members a walk-in clinic for contraception on Wednesdays from noon to 2 p.m. in the Adolescent and Young Adult Medicine Clinic at the CPT Jennifer M. Moreno Clinic.

This report summarizes the annual prevalence of permanent sterilization, as well as use of long- and short-acting reversible contraceptives (LARCs and SARCs, respectively), contraceptive counseling services, and use of emergency contraceptives from 2017 through 2021 among active component U.S. service women.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 10 - October 2022

Report
10/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Letter to the Editor: Clarification of Hepatitis C Virus Screening with Case Definitions and Prevalence Among Trainees

Article
9/1/2022
ALBANY, Ga. (May 11, 2022) - Hospital Corpsman 2nd Class Leeanna Grzemski, a lab technician at Naval Branch Health Clinic Albany, takes a blood sample. Grzemski, a native of Weatherford, Texas, says, “Best part of my job is meeting and interacting with our patients.” (U.S. Navy photo by Deidre Smith, Naval Hospital Jacksonville/Released).

We read with interest the brief report regarding the prevalence of Hepatitis C Virus (HCV) infection in basic military trainee blood donors by Kasper and colleagues in the November 2021 issue of the Medical Surveillance Monthly Report (MSMR),1 an update of a previous similar report

Recommended Content:

Medical Surveillance Monthly Report

Update: Routine Screening for Antibodies to Human Immunodeficiency Virus, U.S. Armed Forces, Active and Reserve Components, January 2017–June 2022

Article
9/1/2022
NAVAL MEDICAL CENTER CAMP LEJEUNE, North Carolina - As the leading petty officer for Naval Medical Center Camp Lejeune's Community Health Clinic, HM2 Kameron Jacobs is part of the first satellite team to treat service members living with HIV.

This report provides an update through June 2022 of routine screening results for antibodies to the human immunodeficiency virus (HIV) among members of the active and reserve components of the U.S. Armed Forces. During the full 5 and 1/2-year surveillance period, the HIV seropositivity rates for active component service members were 0.21 positives per 1,000 members of the Army, 0.24 for the Navy, 0.16 for the Marine Corps, and 0.14 for the Air Force.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Menstrual Suppression Among U.S. Female Service Members in the Millennium Cohort Study

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Bobby Brodeur, a Gilford, New Hampshire, native and machine gunner with 3rd Battalion, 6th Marine Regiment, 2d Marine Division, conducts gun drills at Camp Lejeune, North Carolina, Oct. 13, 2022. Brodeur is currently serving as a machine gunner with 3/6 and is one of three female infantry Marines in Kilo Co. She has demonstrated an unwavering commitment to 3/6 through her high physical fitness scores and leading by example within the platoon. (U.S. Marine Corps photo by Lance Cpl. Megan Ozaki)

Menstrual suppression allows for the control or complete suppression of menstrual periods through hormonal contraceptive methods. In addition to preventing pregnancy, suppression can alleviate medical conditions and symptoms associated with menstruation such as iron deficiency anemia,1 eliminate logistical hygiene-related challenges, and improve quality of life.

Recommended Content:

Medical Surveillance Monthly Report

Evaluation of the MSMR Surveillance Case Definition for Incident Cases of Hepatitis C

Article
9/1/2022
U.S. Marine Corps Lance Cpl. Angel Alvarado, a combat graphics specialist, donates blood for the Armed Services Blood Program (ASBP).

The validity of military hepatitis C virus (HCV) surveillance data is uncertain due to the potential for misclassification introduced when using administrative databases for surveillance purposes. The objectives of this study were to assess the validity of the surveillance case definition used by the Medical Surveillance Monthly Report (MSMR) for HCV, the over and underestimation of cases from surveillance data, and the true burden of HCV disease in the U.S. military.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 09 - September 2022

Report
9/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Health Readiness & Combat Support | Public Health | Medical Surveillance Monthly Report

Musculoskeletal Injuries During U.S. Air Force Special Warfare Training Assessment and Selection, Fiscal Years 2019–2021.

Article
8/1/2022
U.S. Air Force Capt. Hopkins, 351st Special Warfare Training Squadron, Instructor Flight commander and Chief Combat Rescue Officer (CRO) instructor, conducts a military free fall equipment jump from a DHC-4 Caribou aircraft in Coolidge, Arizona, July 17, 2021. Hopkins is recognized as the 2020 USAF Special Warfare Instructor Company Grade Officer of the Year for his outstanding achievement from January 1 to December 31, 2020.

Musculoskeletal (MSK) injuries are costly and the leading cause of medical visits and disability in the U.S. military.1,2 Within training envi­ronments, MSK injuries may lead to a loss of training, deferment to a future class, or voluntary disenrollment from a training pipeline, all of which are impediments to maintaining full levels of manpower and resources for the Department of Defense.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Pain and Post-Traumatic Stress Disorder Screening Outcomes Among Military Personnel Injured During Combat Deployment.

Article
8/1/2022
U.S. Air Force Airman 1st Class Miranda Lugo, right, 18th Operational Medical Readiness Squadron mental health technician and Guardian Wingman trainer, and Maj. Joanna Ho, left, 18th OMRS director of psychological health, discuss the suicide prevention training program, Guardian Wingman, at Kadena Air Base, Japan, Aug. 20, 2021. Guardian Wingman aims to promote wingman culture and early help-seeking behavior. (U.S. Air Force photo by Airman 1st Class Anna Nolte)

The post-9/11 U.S. military conflicts in Iraq and Afghanistan lasted over a decade and yielded the most combat casualties since the Vietnam War. While patient survivability increased to the high­est level in history, a changing epidemiology of combat injuries emerged whereby focus shifted to addressing an array of long-term sequelae, including physical, psychologi­cal, and neurological issues.

Recommended Content:

Medical Surveillance Monthly Report

Prevalence and Distribution of Refractive Errors Among Members of the U.S. Armed Forces and the U.S. Coast Guard, 2019.

Article
8/1/2022
Ophthamologist Air Force Maj. Thuy Tran evaluates a patient during an eye exam. (U.S. Air Force photo by Tech. Sgt. John Hughel)

During calendar year 2019, the estimated prevalence of myopia, hyperopia, and astigmatism were 17.5%, 2.1%, and 11.2% in the active component of the U.S. Armed Forces and 10.1%, 1.2%, and 6.1% of the U.S. Coast Guard, respectively.

Recommended Content:

Medical Surveillance Monthly Report

MSMR Vol. 29 No. 08 - August 2022

Report
8/1/2022

A monthly publication of the Armed Forces Health Surveillance Division. This issue of the peer-reviewed journal contains the following articles: Surveillance trends for SARS-CoV-2 and other respiratory pathogens among U.S. Military Health System Beneficiaries, Sept. 27, 2020 – Oct. 2,2021; Establishment of SARS-CoV-2 genomic surveillance within the MHS during March 1 – Dec. 31 2020; Suicide behavior among heterosexual, lesbian/gay, and bisexual active component service members in the U.S. Armed Forces; Brief report: Phase I results using the Virtual Pooled Registry Cancer Linkage system (VPR-CLS) for military cancer surveillance.

Recommended Content:

Medical Surveillance Monthly Report

Establishment of SARS-CoV-2 Genomic Surveillance Within the Military Health System During 1 March–31 December 2020.

Article
7/1/2022
Dr. Peter Larson loads an Oxford Nanopore MinION sequencer in support of COVID-19 sequencing assay development at the U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Maryland. (Photo by John Braun Jr., USAMRIID.)

This report describes SARS-CoV-2 genomic surveillance conducted by the Department of Defense (DOD) Global Emerging Infections Surveillance Branch and the Next-Generation Sequencing and Bioinformatics Consortium (NGSBC) in response to the COVID-19 pandemic. Samples and sequence data were from SARS-CoV-2 infections occurring among Military Health System (MHS) beneficiaries from 1 March to 31 December 2020.

Recommended Content:

Medical Surveillance Monthly Report

Suicide Behavior Among Heterosexual, Lesbian/Gay, and Bisexual Active Component Service Members in the U.S. Armed Forces.

Article
7/1/2022
  The DOD’s theme for National Suicide Prevention Month is “Connect to Protect: Support is Within Reach.” Deployments, COVID-19 restrictions, and the upcoming winter season are all stressors and potential causes for depression that could lead to suicidal ideations. Options are available to individuals who are having thoughts of suicide and those around them (Photo by Kirk Frady, Regional Health Command Europe).

Lesbian, gay, and bisexual (LGB) individuals are at a particularly high risk for suicidal behavior in the general population of the United States. This study aims to determine if there are differences in the frequency of lifetime suicide ideation and suicide attempts between heterosexual, lesbian/gay, and bisexual service members in the active component of the U.S. Armed Forces. Self-reported data from the 2015 Department of Defense Health-Related Behaviors Survey were used in the analysis.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 14
Refine your search
Last Updated: October 13, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery