Back to Top Skip to main content Skip to sub-navigation

Update: Heat Illness, Active Component, U.S. Armed Forces, 2019

Image of Service members were hiking the road mountain. Service members from Joint Task Force-Bravo participate in Chapel Hike 75. In spite of the heat, sun and exhaustion, service members were enthusiastically hiking the road mountain to provide food for the local community. (U.S. Army photo by Martin Chahin)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

In 2019, there were 507 incident cases of heat stroke and 2,174 incident cases of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion were 0.39 cases and 1.65 cases per 1,000 person-years, respectively. In 2019, subgroup-specific rates of incident heat stroke were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion in 2019 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and service members in combat-specific occupations. During 2015–2019, a total of 348 heat illnesses were documented among service members in Iraq and Afghanistan; 7.5% (n=26) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

WHAT ARE THE NEW FINDINGS?   

Annual rates of incident heat stroke and heat exhaustion cases among active component U.S. military members rose from 2015 through 2018 but then dropped in 2019. Although sizable proportions of heat stroke and heat exhaustion cases were not identified by way of mandatory reports through the Disease Reporting System internet (DRSi), the proportions of heat stroke cases identified via reportable medical events increased steadily between 2015 and 2019.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Heat stroke and heat exhaustion can reduce operational readiness by causing considerable morbidity, particularly during training of recruits and of Marine Corps and Army members in combat arms specialties. Complete and timely submission of mandatory reports of heat illness events ensures that local public health and command leaders have ready access to real-time surveillance data to identify trends and to guide preventive measures.

BACKGROUND

Heat illness refers to a group of disorders that occur when the elevation of core body temperature surpasses the compensatory limits of thermoregulation.1 Heat illness is the result of environmental heat stress and/or exertion and represents a set of conditions that exist along a continuum from less severe (heat exhaustion) to potentially life threatening (heat stroke).

Heat exhaustion is caused by the inability to maintain adequate cardiac output because of strenuous physical exertion and environmental heat stress.1,2 Acute dehydration often accompanies heat exhaustion but is not required for the diagnosis.3 The clinical criteria for heat exhaustion include a core body temperature greater than 100.5ºF/38ºC and less than 104ºF/40ºC at the time of or immediately after exertion and/or heat exposure, physical collapse at the time of or shortly after physical exertion, and no significant dysfunction of the central nervous system. If any central nervous system dysfunction develops (e.g., dizziness or headache), it is mild and rapidly resolves with rest and cooling measures (e.g., removal of unnecessary clothing, relocation to a cooled environment, and oral hydration with cooled, slightly hypotonic solutions).1–4

Heat stroke is a debilitating illness characterized clinically by severe hyperthermia (i.e., a core body temperature of 104ºF/40ºC or greater), profound central nervous system dysfunction (e.g., delirium, seizures, or coma), and additional organ and tissue damage.1,4,5 The onset of heat stroke requires aggressive clinical treatments, including rapid cooling and supportive therapies such as fluid resuscitation to stabilize organ function.1,5 The observed pathologic changes in several organ systems are thought to occur through a complex interaction between heat cytotoxicity, coagulopathies, and a severe systemic inflammatory response.1,5 Multiorgan system failure is the ultimate cause of mortality due to heat stroke.5

Timely medical intervention can prevent milder cases of heat illness (e.g., heat exhaustion) from becoming severe (e.g., heat stroke) and potentially life threatening. However, even with medical intervention, heat stroke may have lasting effects, including damage to the nervous system and other vital organs and decreased heat tolerance, making an individual more susceptible to subsequent episodes of heat illness.6–8 Furthermore, the continued manifestation of multiorgan system dysfunction after heat stroke increases patients’ risk of mortality during the ensuing months and years.9,10

Strenuous physical activity for extended durations in occupational settings as well as during military operational and training exercises exposes service members to considerable heat stress because of high environmental heat and/or a high rate of metabolic heat production.11,12 In some military settings, wearing needed protective clothing or equipment may make it biophysically difficult to dissipate body heat.13,14 The resulting body heat burden and associated cardiovascular strain reduce exercise performance and increase the risk of heat-related illness.11,15

Over many decades, lessons learned during military training and operations in hot environments as well as a substantial body of literature have resulted in doctrine, equipment, and preventive measures that can significantly reduce the adverse health effects of military activities in hot weather.16–22 Although numerous effective countermeasures are available, heat-related illness remains a significant threat to the health and operational effectiveness of military members and their units and accounts for considerable morbidity, particularly during recruit training in the U.S. military.11,23 Moreover, with the projected rise in the intensity and frequency of extreme heat conditions associated with global climate change, heat-related illnesses will likely represent an increasing challenge to the military.24–26

In the U.S. Military Health System (MHS), the most serious types of heat-related illness are considered notifiable medical events. Notifiable cases of heat illness include heat exhaustion and heat stroke. All cases of heat illness that require medical intervention or result in change of duty status are reportable.4

This report summarizes reportable medical events of heat illness as well as heat illness-related hospitalizations and ambulatory visits among active component service members during 2019 and compares them to the previous 4 years. Episodes of heat stroke and heat exhaustion are summarized separately.

METHODS

 The surveillance period was 1 January 2015 through 31 December 2019. The surveillance population included all individuals who served in the active component of the Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. All data used to determine incident heat illness diagnoses were derived from records routinely maintained in the Defense Medical Surveillance System (DMSS). These records document both ambulatory encounters and hospitalizations of active component service members of the U.S. Armed Forces in fixed military and civilian (if reimbursed through the MHS) treatment facilities worldwide. In-theater diagnoses of heat illness were identified from medical records of service members deployed to Southwest Asia or the Middle East and whose healthcare encounters were documented in the Theater Medical Data Store. Because heat illnesses represent a threat to the health of individual service members and to military training and operations, the Armed Forces require expeditious reporting of these reportable medical events through any of the service-specific electronic reporting systems; these reports are routinely transmitted and incorporated into the DMSS.

For this analysis, a case of heat illness was defined as an individual with 1) a hospitalization or outpatient medical encounter with a primary (first-listed) or secondary (second-listed) diagnosis of heat stroke (International Classification of Diseases, 9th Revision [ICD-9]: 992.0; International Classification of Diseases, 10th Revision [ICD-10]: T67.0*) or heat exhaustion (ICD-9: 992.3–992.5; ICD-10: T67.3*–T67.5*) or 2) a reportable medical event record of heat exhaustion or heat stroke.27 Because of an update to the Disease Reporting System internet (DRSi) medical event reporting system in July 2017, the type of reportable medical events for heat illness (i.e., heat stroke or heat exhaustion) could not be distinguished using reportable medical event records in DMSS data. Instead, information on the type of reportable medical event for heat illness during the entire 2015–2019 surveillance period was extracted from the DRSi. It is important to note that MSMR analyses carried out before 2018 included diagnosis codes for other and unspecified effects of heat and light (ICD-9: 992.8 and 992.9; ICD-10: T67.8* and T67.9*) within the heat illness category “other heat illnesses.” These codes were excluded from the current analysis and the April 2018 and April 2019 MSMR analyses. If an individual had a diagnosis for both heat stroke and heat exhaustion during a given year, only 1 diagnosis was selected, prioritizing heat stroke over heat exhaustion. Encounters for each individual within each calendar year then were prioritized in terms of record source with hospitalizations prioritized over reportable events, which were prioritized over ambulatory visits.

For surveillance purposes, a “recruit trainee” was defined as an active component service member (grades E1–E4) who was assigned to 1 of the services’ 8 recruit training locations (per the individual’s initial military personnel record). For this report, each service member was considered a recruit trainee for the period corresponding to the usual length of recruit training in his or her service. Recruit trainees were considered a separate category of enlisted service members in summaries of heat illnesses by military grade overall.

Records of medical evacuations from the U.S. Central Command (CENTCOM) area of responsibility (AOR) (e.g., Iraq or Afghanistan) to a medical treatment facility outside the CENTCOM AOR were analyzed separately. Evacuations were considered case defining if affected service members had at least 1 inpatient or outpatient heat illness medical encounter in a permanent military medical facility in the U.S. or Europe from 5 days before to 10 days after their evacuation dates.

The new electronic health record for the MHS, MHS GENESIS, was implemented at 4 military treatment facilities in the state of Washington in 2017 (Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center). Implementation of the second wave of MHS GENESIS sites began in 2019 and included 3 facilities in California (Travis Air Force Base [AFB], the Presidio of Monterey, and Naval Air Station Lemoore) and 1 in Idaho (Mountain Home AFB). Medical data from facilities using MHS GENESIS are not available in the DMSS. Therefore, medical encounter data for individuals seeking care at any of these facilities after their conversion to MHS GENESIS during 2017–2019 were not included in the current analysis.

RESULTS 

In 2019, there were 507 incident cases of heat stroke and 2,174 incident cases of heat exhaustion among active component service members (Table 1). The crude overall incidence rates of heat stroke and heat exhaustion were 0.39 and 1.65 per 1,000 person-years (p-yrs), respectively. In 2019, subgroup-specific incidence rates of heat stroke were highest among males, those less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations (Table 1).The rates of incident heat stroke among Marine Corps and Army members were more than 10 times the rates among Air Force and Navy members. The incidence rate of heat stroke among service women was 44.8% lower than the rate among service men. There were only 51 cases of heat stroke reported among recruit trainees, but their incidence rate was more than 4 times that of other enlisted members and officers.

The crude overall incidence rates of heat exhaustion among males and females were close in value (1.66 per 1,000 p-yrs and 1.62 per 1,000 p-yrs, respectively) (Table 1).In 2019, compared to their respective counterparts, service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and service members in combat-specific occupations had notably higher rates of incident heat exhaustion.

Crude (unadjusted) annual incidence rates of heat stroke increased steadily from 0.33 per 1,000 p-yrs in 2015 to 0.45 cases per 1,000 p-yrs in 2018 and then dropped to 0.39 cases per 1,000 p-yrs in 2019 (Figure 1).In the last year of the surveillance period, there were fewer heat stroke-related hospitalizations and ambulatory visits than in 2018 but more reportable medical events. The proportions of total heat stroke cases from hospitalizations remained relatively stable during 2015–2019 (range: 23.2%–28.7%). The proportions of total heat stroke cases from reportable medical events increased steadily over the course of the period (from 19.2% in 2015 to 34.5% in 2019), while the proportions of total cases from ambulatory visits decreased (from 57.6% in 2015 to 49.6% in 2019).

Crude annual rates of incident heat exhaustion increased between 2015 and 2016, were stable during 2016–2017, increased to a peak of 1.72 per 1,000 p-yrs in 2018, and then dropped to 1.65 per 1,000 p-yrs in 2019 (Figure 2). During the 5-year surveillance period, the proportions of total heat exhaustion cases from reportable medical events fluctuated between 27.9% and 39.5% and the proportions of cases from ambulatory visits varied between 57.6% and 69.4%. However, the proportions of heat exhaustion cases from hospitalizations remained relatively stable (range: 1.8%–3.4%).

Heat illnesses by location

During the 5-year surveillance period, a total of 12,361 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide (Table 2). Less than 5% of the total heat illness cases occurred outside of the U.S. (n=537). Four Army installations accounted for slightly more than one-third (34.4%) of all heat illnesses during the period (Fort Benning, GA [n=1,757]; Fort Bragg, NC [n=1,087]; Fort Campbell, KY [n=752]; and Fort Polk, LA [n=652]). Six other locations accounted for an additional one-quarter (25.4%) of heat illness events (Marine Corps Base [MCB] Camp Lejeune/Cherry Point, NC [n=865]; Marine Corps Recruit Depot Parris Island/Beaufort, SC [n=637]; MCB Camp Pendleton, CA [n=531]; Naval Medical Center San Diego, CA [n=498]; Fort Hood, TX [n=341]; and MCB Quantico, VA [n=273]). Of these 10 locations with the most heat illness events, 7 are located in the southeastern U.S. The 21 locations with more than 100 cases of heat illness accounted for over three-quarters (76.2%) of all active component cases during 2015–2019.

Heat illnesses in Iraq and Afghanistan

During the 5-year surveillance period, a total of 348 heat illnesses were diagnosed and treated in Iraq and Afghanistan (Figure 3). Of the total cases of heat illness, 7.5% (n=26) were diagnosed as heat stroke. Deployed service members who were affected by heat illnesses were most frequently male (n=291; 83.6%), non-Hispanic white (n=207; 59.5%), 20–24 years old (n=186; 53.4%), in the Army (n=180; 51.7%), enlisted (n=339; 97.4%), and in repair/engineering (n=110; 31.6%) or combat-specific (n=104; 29.9%) occupations (data not shown).During the surveillance period, 3 service members were medically evacuated for heat illnesses from Iraq or Afghanistan; all of the evacuations took place in the summer months (May–September).

EDITORIAL COMMENT

This annual update of heat illnesses among service members in the active component documented that the unadjusted annual rates of incident heat stroke increased steadily between 2015 and 2018 and then dropped in 2019. The crude annual incidence rate of heat exhaustion in 2019 represents a 13.7% decrease from the peak rate in 2018.

There are significant limitations to this update that should be considered when interpreting the results. Similar heat-related clinical illnesses are likely managed differently and reported with different diagnostic codes at different locations and in different clinical settings. Such differences undermine the validity of direct comparisons of rates of nominal heat stroke and heat exhaustion events across locations and settings. Also, heat illnesses during training exercises and deployments that are treated in field medical facilities are not completely ascertained as cases for this report. In addition, it should be noted that the guidelines for mandatory reporting of heat illnesses were modified in the 2017 revision of the Armed Forces guidelines and case definitions for reportable medical events and carried into the 2020 revision.4 In this updated version of the guidelines and case definitions, the heat injury category was removed, leaving only case classifications for heat stroke and heat exhaustion. To compensate for such possible variation in reporting, the analysis for this update, as in previous years, included cases identified in DMSS records of ambulatory care and hospitalizations using a consistent set of ICD-9/ICD-10 codes for the entire surveillance period. However, it also is important to note that the exclusion of diagnosis codes for other and unspecified effects of heat and light (formerly included within the heat illness category “other heat illnesses”) in the current analysis precludes the direct comparison of numbers and rates of cases of heat exhaustion to the numbers and rates of “other heat illnesses” reported in MSMR updates before 2018.

As has been noted in previous MSMR heat illness updates, results indicate that a sizable proportion of cases identified through DMSS records of ambulatory visits did not prompt mandatory reports through the reporting system.23 However, this study did not directly ascertain the overlap between hospitalizations and reportable events and the overlap between reportable events and outpatient encounters. It is possible that cases of heat illness, whether diagnosed during an inpatient or outpatient encounter, were not documented as reportable medical events because treatment providers were not attentive to the criteria for reporting or because of ambiguity in interpreting the criteria (e.g., the heat illness did not result in a change in duty status, or the core body temperature measured during/immediately after exertion or heat exposure was not available). Underreporting is especially concerning for cases of heat stroke because it may reflect insufficient attentiveness to the need for prompt recognition of cases of this dangerous illness and for timely intervention at the local level to prevent additional cases.

In spite of its limitations, this report demonstrates that heat illnesses are a significant and persistent threat to both the health of U.S. military members and the effectiveness of military operations. Of all military members, the youngest and most inexperienced Marine Corps and Army members (particularly those training at installations in the southeastern U.S.) are at highest risk of heat illnesses, including heat stroke, exertional hyponatremia, and exertional rhabdomyolysis (see the other articles in this issue of the MSMR).

Commanders, small unit leaders, training cadre, and supporting medical personnel—particularly at recruit training centers and installations with large combat troop populations—must ensure that the military members whom they supervise and support are informed regarding the risks, preventive countermeasures (e.g., water consumption), early signs and symptoms, and first-responder actions related to heat illnesses.16–22,28–30 Leaders should be aware of the dangers of insufficient hydration on the one hand and excessive water intake on the other; they must have detailed knowledge of, and rigidly enforce countermeasures against, all types of heat illnesses.

Policies, guidance, and other information related to heat illness prevention and treatment among U.S. military members are available online through the Army Public Health Center website at https://phc.amedd.army.mil/topics/discond/.
 

REFERENCES

1.  Atha WF. Heat-related illness. Emerg Med Clin North Am. 2013;31(4):1097–1108.

2.  Simon HB. Hyperthermia. N Engl J Med. 1993;329(7):483–487.

3.  O’Connor FG, Sawka MN, Deuster P. Disorders due to heat and cold. In: Goldman L, Schafer AI, eds. Goldman-Cecil Medicine. 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:692–693.

4.  Armed Forces Health Surveillance Branch, Defense Health Agency. In collaboration with U.S. Air Force School of Aerospace Medicine, Army Public Health Center, and Navy and Marine Corps Public Health Center. Armed Forces Reportable Medical Events. Guidelines and Case Definitions, January 2020. https://health.mil/Reference-Center/Publications/2020/01/01/Armed-Forces-Reportable-Medical-Events-Guidelines. Accessed 1 April 2020.

5.  Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–647.

6.  Epstein Y. Heat intolerance: predisposing factor or residual injury? Med Sci Sports Exerc. 1990;22(1):29–35.

7.  O’Connor FG, Casa DJ, Bergeron MF, et al. American College of Sports Medicine roundtable on exertional heat stroke—return to duty/return to play: conference proceedings. Curr Sports Med Rep. 2010;9(5):314–321.

8.  Shapiro Y, Magazanik A, Udassin R, Ben-Baruch G, Shvartz E, Shoenfeld Y. Heat intolerance in former heatstroke patients. Ann Intern Med. 1979;90(6):913–916.

9.  Dematte JE, O’Mara K, Buescher J, et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–181.

10.  Wallace RF, Kriebel D, Punnett L, Wegman DH, Amoroso PJ. Prior heat illness hospitalization and risk of early death. Environ Res. 2007;104(2):290–295.

11.  Carter R 3rd, Cheuvront SN, Williams JO, et al. Epidemiology of hospitalizations and deaths from heat illness in soldiers. Med Sci Sports Exerc. 2005;37(8):1338–1344.

12.  Hancock PA, Ross JM, Szalma JL. A meta-analysis of performance response under thermal stressors. Hum Factors. 2007;49(5):851–877.

13.  Caldwell JN, Engelen L, van der Henst C, Patterson MJ, Taylor NA. The interaction of body armor, low-intensity exercise, and hot-humid conditions on physiological strain and cognitive function. Mil Med. 2011;176(5):488–493.

14.  Maynard SL, Kao R, Craig DG. Impact of personal protective equipment on clinical output and perceived exertion. J R Army Med Corps. 2016;162(3):180–183.

15.  Sawka MN, Cheuvront SN, Kenefick RW. High skin temperature and hypohydration impair aerobic performance. Exp Physiol. 2012;97(3):327–332.

16.  Goldman RF. Introduction to heat-related problems in military operations. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:3–49.

17.  Sonna LA. Practical medical aspects of military operations in the heat. In: Lounsbury DE, Bellamy RF, Zajtchuk R, eds. Textbook of Military Medicine: Medical Aspects of Harsh Environments, Volume 1. Falls Church, VA: Office of the Surgeon General; 2001:293–309.

18.  Headquarters, Department of the Army and Air Force. Technical Bulletin, Medical 507, Air Force Pamphlet 48-152. Heat Stress Control and Heat Casualty Management. 7 March 2003.

19.  Headquarters, United States Marine Corps, Department of the Navy. Marine Corps Order 6200.1E. Marine Corps Heat Injury Prevention Program. Washington DC: Department of the Navy; 6 June 2002.

20.  Navy Environmental Health Center. Technical Manual NEHC-TM-OEM 6260.6A. Prevention and Treatment of Heat and Cold Stress Injuries. Published June 2007.

21.  Webber BJ, Casa DJ, Beutler AI, Nye NS, Trueblood WE, O'Connor FG. Preventing exertional death in military trainees: recommendations and treatment algorithms from a multidisciplinary working group. Mil Med. 2016;181(4):311–318.

22.  Lee JK, Kenefick RW, Cheuvront SN. Novel cooling strategies for military training and operations. J Strength Cond Res. 2015;29(suppl 11):S77–S81.

23.  Armed Forces Health Surveillance Branch. Update: Heat illness, active component, U.S. Armed Forces, 2018. MSMR. 2019;26(4):15–20.

24.  Dahl K, Licker R, Abatzoglou JT, Declet-Barreto J. Increased frequency of and population exposure to extreme heat index days in the United States during the 21st century. Environ Res Commun. 2019;1:075002.

25.  Parsons IT, Stacey MJ, Woods DR. Heat adaptation in military personnel: mitigating risk, maximizing performance. Front Physiol. 2019;10:1485.

26.  Kenny GP, Notley SR, Flouris AD, Grundstein A. Climate change and heat exposure: impact on health in occupational and general populations. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence-Based Guide. Cham, Switzerland: Springer Nature; 2020:225–261.

27.  Armed Forces Health Surveillance Branch. Surveillance case definition: Heat illness. https://health.mil/Reference-Center/Publications/2019/10/01/Heat-Injuries. Accessed on 1 April 2020.

28.  Headquarters, Department of the Army Training and Doctrine Command. Memorandum. TRADOC Heat Illness Prevention Program 2018. 8 January 2018.

29.  Kazman JB, O’Connor FG, Nelson DA, Deuster PA. Exertional heat illness in the military: risk mitigation. In: Hosokawa Y, ed. Human Health and Physical Activity During Heat Exposure. Cham, Switzerland: SpringerBriefs in Medical Earth Sciences; 2018:59–71.

30.  Nye NS, O’Connor FG. Exertional heat illness considerations in the military. In: Adams W, Jardine J, eds. Exertional Heat Illness: A Clinical and Evidence-Based Guide. Cham, Switzerland: Springer Nature; 2020:181–210.

  Incident casesa and incidence rates of heat stroke, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2015–2019

Incident casesa and incidence rates of heat exhaustion, by source of report and year of diagnosis, active component, U.S. Armed Forces, 2015–2019

Numbers of heat illnesses diagnosed in Iraq/Afghanistan, active component, U.S. Armed Forces, 2015–2019

Incident casesa and incidence ratesb of heat illness, by demographic and military characteristics, active component, U.S. Armed Forces, 2019

Heat illness events,a by location of diagnosis/report (with at least 100 cases during the period), active component, U.S. Armed Forces, 2015–2019

You also may be interested in...

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Marine Corps Cpl. Luis Alicea drinks water after a combat conditioning exercise at Naval Air Station Joint Reserve Base New Orleans, May 20, 2019. Photo By: Marine Corps Lance Cpl. Jose Gonzalez.

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
The Embry-Riddle Army ROTC Ranger Challenge team heads out on the 12-mile road march after completing the timed obstacle course event of the 6th Brigade Army ROTC Ranger Challenge January 14, 2022 at Fort Benning, Ga. The Titan Brigade’s Ranger Challenge took place at Fort Benning, Ga. January 13-15, 2022. Photo by Capt. Stephanie Snyder

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Recommended Content:

Medical Surveillance Monthly Report

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Airmen participate in the 13th Annual Fallen Defender Ruck March at Joint Base San Antonio, Nov. 6, 2020. The event honors 186 fallen security forces, security police and air police members who have made the ultimate sacrifice. Photo By: Sarayuth Pinthong, Air Force.

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Medical Separation from Service Among Incident Cases of Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
3/1/2022
Marines hike to the next training location during Exercise Baccarat in Aveyron, Occitanie, France, Oct.16, 2021. Exercise Baccarat is a three-week joint exercise with Marines and the French Foreign Legion that challenges forces with physical and tactical training. Photo By: Marine Corps Lance Cpl. Jennifer Reyes

Osteoarthritis (OA) is the most common adult joint disease and predominantly involves the weight-bearing joints. This condition, including spondylosis (OA of the spine), results in significant disability and resource utilization and is a leading cause of medical separation from military service.

Recommended Content:

Medical Surveillance Monthly Report

Brief report: Using syndromic surveillance to monitor MIS-C associated with COVID-19 in Military Health System beneficiaries

Article
3/1/2022
Air Force 1st Lt. Anthony Albina, a critical care nurse assigned to Joint Base Andrews, Md., checks a patient’s breathing and heart rate during an intubation procedure while supporting COVID-19 response operations in Cleveland, Jan. 20, 2022.

SARS CoV-2 and the illness it causes, COVID-19, have exacted a heavy toll on the global community. Most of the identified disease has been in the elderly and adults. The goal of this analysis was to ascertain if user-built ESSENCE queries applied to records of outpatient MHS health care encounters are capable of detecting MIS-C cases that have not been identified or reported by local public health departments.

Recommended Content:

Medical Surveillance Monthly Report

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Article
3/1/2022
Maintaining a healthy weight is important for military members to stay fit to fight. The body mass index is a tool that can be used to determine if an individual is at an appropriate weight for their height. A person’s index is determined by their weight in kilograms divided by the square of height in meters. (U.S. Air Force photo illustration by Airman 1st Class Destinee Sweeney)

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Article
3/1/2022
Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DoD photo by Reese Brown)

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2021

Article
3/1/2022
Mosquitos – like this one, collected as part of a military study in North Carolina – were used during USAMRDC’s initial RTS,S vaccine studies nearly 40 years ago. (Photo courtesy: AFC Kimberly Barrera)

Malaria infection remains an important health threat to U.S. service members who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. In 2021, a total of 20 service members were diagnosed with or reported to have malaria.

Recommended Content:

Medical Surveillance Monthly Report

A new approach to categorization of ocular injury among U.S. Armed Forces

Article
2/1/2022
Air Force and Space Force Surgeon General Lt. Gen. Dorothy Hogg receives an eye exam from Air Force Reserve Maj. Leslie Wilderson at Joint Base Anacostia-Bolling, Washington, D.C., March 26, 2021. Photo By: Air Force Staff Sgt. Kayla White

Ocular injuries present an ongoing threat to readiness and retention of service members. This report describes a new approach to categorizing ocular injury using Military Health System data, the application of an algorithm to a dataset, and the verification of the results using an audit of clinical data.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Health care burden attributable to osteoarthritis and spondylosis, active component, U.S. Armed Forces, 2016–2020

Article
2/1/2022
Air Force security forces trainees climb a hill during a 3-mile ruck march to commemorate National Police Week at Joint Base San Antonio, May 13, 2019. Photo By: Sarayuth Pinthong, Air Force

This snapshot summarizes the total numbers of inpatient and outpatient encounters with an OA or spondylosis diagnosis in the first diagnostic position and the total numbers of unique individuals affected by these conditions during the same 5-year surveillance period.

Recommended Content:

Medical Surveillance Monthly Report

Diagnosis of hepatitis C infection and cascade of care in the active component, U.S. Armed Forces, 2020

Article
2/1/2022
Navy Petty Officer 2nd Class Cecil Dorse, left, and Navy Petty Officer 3rd Class Janet Rosas test blood samples aboard the Military Sealift Command hospital ship USNS Comfort while the ship is in New York City in support of the nation’s COVID-19 response, April 6, 2020. Photo By: Navy Petty Officer 2nd Class Sara Eshleman

Hepatitis C virus (HCV) infection rates are rising in the U.S. despite widely available tools to identify and effectively treat nearly all of these cases. This cross-sectional study aimed to use laboratory data to evaluate the prevalence of HCV diagnoses among active component U.S. military service members.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Lengths of Hospital Stays for Service Members Diagnosed with Sepsis, Active Component, U.S. Armed Forces, 2011–2020

Article
1/1/2022
The (left to right) Senior Airman Austin Shrewsbury, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, works with student, Airman 1st Class Taylor Altman, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, to identify bacteria of patient’s cultures inside the microbiology laboratory at Wright-Patterson Air Force Base medical center June 30, 2017.

Sepsis is a serious and life-threatening organ dysfunction caused by a dysregulated host response to infection. In the U.S., sepsis is a leading cause of in-hospital mortality and 1 of the most expensive conditions treated in U.S. hospitals.

Recommended Content:

Medical Surveillance Monthly Report

Description of a COVID-19 Beta Variant Outbreak, Joint Base Lewis-McChord, WA, February–March 2021

Article
1/1/2022
U.S. Army Soldiers from 1-17th Infantry Battalion, 2nd Stryker Brigade, 2nd Infantry Division, clear an objective during the training exercise Bayonet Focus 19-02 at Yakima Training Center, Wash., May 6, 2019. Bayonet Focus is a training exercise designed to assess Soldiers’ ability to preform tasks and complete objectives under conditions experienced during combat situations. (U.S. Army photo by Spc. Angel Ruszkiewicz)

This report describes an outbreak of SARS-CoV-2, the causative agent of COVID-19, that peaked during 21–26 February 2021 and was tied to a single military training event. A total of 143 laboratory-confirmed cases were identified.

Recommended Content:

Medical Surveillance Monthly Report

COVID-19 and Depressive Symptoms Among Active Component U.S. Service Members, January 2019–July 2021

Article
1/1/2022
With the holiday season upon us, the cold, dark days that winter brings, and the social distancing and movement restrictions brought about by COVID-19, it’s not uncommon for people to feel depressed. (Photo by Erin Bolling)

This study examined the rates of depressive symptoms in active component U.S. service members prior to and during the COVID-19 pandemic and evaluated whether SARS-CoV-2 test results (positive or negative) were associated with self-reported depressive symptoms.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Heat Illness at Fort Benning, GA: Unique Insights from the Army Heat Center

Article
4/1/2022
Navy Petty Officer 3rd Class Ryan Adams is being used as an example victim for cooling a heat casualty at the bi-annual hot weather standard operating procedure training aboard Marine Corps Base Camp Lejeune, N.C., Aug. 24. Adams is demonstrating the "burrito" method used to cool a heat related injury victim. Photo by Pfc. Joshua Grant.

Exertional heat illness (hereafter referred to as heat illness) spans a spectrum from relatively mild conditions such as heat cramps and heat exhaustion, to more serious and potentially life-threatening conditions such as heat injury and exertional heat stroke (hereafter heat stroke).

Recommended Content:

Medical Surveillance Monthly Report

Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2006–2021

Article
4/1/2022
Marine Corps Cpl. Luis Alicea drinks water after a combat conditioning exercise at Naval Air Station Joint Reserve Base New Orleans, May 20, 2019. Photo By: Marine Corps Lance Cpl. Jose Gonzalez.

Exertional (or exercise-associated) hyponatremia refers to a low serum, plasma, or blood sodium concentration (below 135 mEq/L) that develops during or up to 24 hours following prolonged physical activity. Acute hyponatremia creates an osmotic imbalance between fluids outside and inside of cells.

Recommended Content:

Medical Surveillance Monthly Report

Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2017–2021

Article
4/1/2022
The Embry-Riddle Army ROTC Ranger Challenge team heads out on the 12-mile road march after completing the timed obstacle course event of the 6th Brigade Army ROTC Ranger Challenge January 14, 2022 at Fort Benning, Ga. The Titan Brigade’s Ranger Challenge took place at Fort Benning, Ga. January 13-15, 2022. Photo by Capt. Stephanie Snyder

Exertional rhabdomyolysis is a potentially serious condition that requires a vigilant and aggressive approach. Some service members who experience exertional rhabdomyolysis may be at risk for recurrences, which may limit their military effectiveness and potentially predispose them to serious injury.

Recommended Content:

Medical Surveillance Monthly Report

Heat Illness, Active Component, U.S. Armed Forces, 2021

Article
4/1/2022
Airmen participate in the 13th Annual Fallen Defender Ruck March at Joint Base San Antonio, Nov. 6, 2020. The event honors 186 fallen security forces, security police and air police members who have made the ultimate sacrifice. Photo By: Sarayuth Pinthong, Air Force.

From 2020 to 2021, the rate of incident heat stroke was relatively stable while the rate of heat exhaustion increased slightly

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Medical Separation from Service Among Incident Cases of Osteoarthritis and Spondylosis, Active Component, U.S. Armed Forces, 2016–2020

Article
3/1/2022
Marines hike to the next training location during Exercise Baccarat in Aveyron, Occitanie, France, Oct.16, 2021. Exercise Baccarat is a three-week joint exercise with Marines and the French Foreign Legion that challenges forces with physical and tactical training. Photo By: Marine Corps Lance Cpl. Jennifer Reyes

Osteoarthritis (OA) is the most common adult joint disease and predominantly involves the weight-bearing joints. This condition, including spondylosis (OA of the spine), results in significant disability and resource utilization and is a leading cause of medical separation from military service.

Recommended Content:

Medical Surveillance Monthly Report

Brief report: Using syndromic surveillance to monitor MIS-C associated with COVID-19 in Military Health System beneficiaries

Article
3/1/2022
Air Force 1st Lt. Anthony Albina, a critical care nurse assigned to Joint Base Andrews, Md., checks a patient’s breathing and heart rate during an intubation procedure while supporting COVID-19 response operations in Cleveland, Jan. 20, 2022.

SARS CoV-2 and the illness it causes, COVID-19, have exacted a heavy toll on the global community. Most of the identified disease has been in the elderly and adults. The goal of this analysis was to ascertain if user-built ESSENCE queries applied to records of outpatient MHS health care encounters are capable of detecting MIS-C cases that have not been identified or reported by local public health departments.

Recommended Content:

Medical Surveillance Monthly Report

Obesity prevalence among active component service members prior to and during the COVID-19 pandemic, January 2018–July 2021

Article
3/1/2022
Maintaining a healthy weight is important for military members to stay fit to fight. The body mass index is a tool that can be used to determine if an individual is at an appropriate weight for their height. A person’s index is determined by their weight in kilograms divided by the square of height in meters. (U.S. Air Force photo illustration by Airman 1st Class Destinee Sweeney)

This study examined monthly prevalence of obesity and exercise in active component U.S. military members prior to and during the COVID-19 pandemic. These results suggest that the COVID-19 pandemic had a small effect on the trend of obesity in the active component U.S. military and that obesity prevalence continues to increase.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Refractive Surgery Trends at Tri-Service Refractive Surgery Centers and the Impact of the COVID-19 Pandemic, Fiscal Years 2000–2020

Article
3/1/2022
Cadet Saverio Macrina, U.S. Military Academy West Point, receives corneal cross-linking procedure at Fort Belvoir Community Hospital, Va., Nov. 21, 2016. (DoD photo by Reese Brown)

Since the official introduction of laser refractive surgery into clinical practice throughout the Military Health System (MHS) in fiscal year 2000, these techniques have been heavily implemented in the tri-service community to better equip and improve the readiness of the U.S. military force.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2021

Article
3/1/2022
Mosquitos – like this one, collected as part of a military study in North Carolina – were used during USAMRDC’s initial RTS,S vaccine studies nearly 40 years ago. (Photo courtesy: AFC Kimberly Barrera)

Malaria infection remains an important health threat to U.S. service members who are located in endemic areas because of long-term duty assignments, participation in shorter-term contingency operations, or personal travel. In 2021, a total of 20 service members were diagnosed with or reported to have malaria.

Recommended Content:

Medical Surveillance Monthly Report

A new approach to categorization of ocular injury among U.S. Armed Forces

Article
2/1/2022
Air Force and Space Force Surgeon General Lt. Gen. Dorothy Hogg receives an eye exam from Air Force Reserve Maj. Leslie Wilderson at Joint Base Anacostia-Bolling, Washington, D.C., March 26, 2021. Photo By: Air Force Staff Sgt. Kayla White

Ocular injuries present an ongoing threat to readiness and retention of service members. This report describes a new approach to categorizing ocular injury using Military Health System data, the application of an algorithm to a dataset, and the verification of the results using an audit of clinical data.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance snapshot: Health care burden attributable to osteoarthritis and spondylosis, active component, U.S. Armed Forces, 2016–2020

Article
2/1/2022
Air Force security forces trainees climb a hill during a 3-mile ruck march to commemorate National Police Week at Joint Base San Antonio, May 13, 2019. Photo By: Sarayuth Pinthong, Air Force

This snapshot summarizes the total numbers of inpatient and outpatient encounters with an OA or spondylosis diagnosis in the first diagnostic position and the total numbers of unique individuals affected by these conditions during the same 5-year surveillance period.

Recommended Content:

Medical Surveillance Monthly Report

Diagnosis of hepatitis C infection and cascade of care in the active component, U.S. Armed Forces, 2020

Article
2/1/2022
Navy Petty Officer 2nd Class Cecil Dorse, left, and Navy Petty Officer 3rd Class Janet Rosas test blood samples aboard the Military Sealift Command hospital ship USNS Comfort while the ship is in New York City in support of the nation’s COVID-19 response, April 6, 2020. Photo By: Navy Petty Officer 2nd Class Sara Eshleman

Hepatitis C virus (HCV) infection rates are rising in the U.S. despite widely available tools to identify and effectively treat nearly all of these cases. This cross-sectional study aimed to use laboratory data to evaluate the prevalence of HCV diagnoses among active component U.S. military service members.

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Lengths of Hospital Stays for Service Members Diagnosed with Sepsis, Active Component, U.S. Armed Forces, 2011–2020

Article
1/1/2022
The (left to right) Senior Airman Austin Shrewsbury, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, works with student, Airman 1st Class Taylor Altman, 88th Diagnostics and Therapeutic Squadron medical laboratory technician, to identify bacteria of patient’s cultures inside the microbiology laboratory at Wright-Patterson Air Force Base medical center June 30, 2017.

Sepsis is a serious and life-threatening organ dysfunction caused by a dysregulated host response to infection. In the U.S., sepsis is a leading cause of in-hospital mortality and 1 of the most expensive conditions treated in U.S. hospitals.

Recommended Content:

Medical Surveillance Monthly Report

Description of a COVID-19 Beta Variant Outbreak, Joint Base Lewis-McChord, WA, February–March 2021

Article
1/1/2022
U.S. Army Soldiers from 1-17th Infantry Battalion, 2nd Stryker Brigade, 2nd Infantry Division, clear an objective during the training exercise Bayonet Focus 19-02 at Yakima Training Center, Wash., May 6, 2019. Bayonet Focus is a training exercise designed to assess Soldiers’ ability to preform tasks and complete objectives under conditions experienced during combat situations. (U.S. Army photo by Spc. Angel Ruszkiewicz)

This report describes an outbreak of SARS-CoV-2, the causative agent of COVID-19, that peaked during 21–26 February 2021 and was tied to a single military training event. A total of 143 laboratory-confirmed cases were identified.

Recommended Content:

Medical Surveillance Monthly Report

COVID-19 and Depressive Symptoms Among Active Component U.S. Service Members, January 2019–July 2021

Article
1/1/2022
With the holiday season upon us, the cold, dark days that winter brings, and the social distancing and movement restrictions brought about by COVID-19, it’s not uncommon for people to feel depressed. (Photo by Erin Bolling)

This study examined the rates of depressive symptoms in active component U.S. service members prior to and during the COVID-19 pandemic and evaluated whether SARS-CoV-2 test results (positive or negative) were associated with self-reported depressive symptoms.

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 1 - 15 Page 1 of 12
Refine your search
Last Updated: July 30, 2020

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.