Skip to main content

Military Health System

Historical Perspective: The Evolution of Post-exposure Prophylaxis for Vivax Malaria Since the Korean War

Image of An Aedes aegypti mosquito. An Aedes aegypti mosquito can transmit the viruses that cause dengue fever.
CDC/Prof. Frank Hadley Collins, Cntr. for Global Health and Infectious Diseases, Univ. of Notre Dame

Recommended Content:

Medical Surveillance Monthly Report

Malaria during the Korean War

During the Korean War (1950–1953) malaria was a major infectious disease threat to infantry forces operating in Korea during the summer transmission season. Plasmodium vivax with a long latency period ad evolved such that many soldiers were exposed to infectious mosquitoes during their service in Korea during the summer but only became aware of their infection during the next year when latent hepatic parasites (hypnozoites) reactivated to cause symptomatic relapses. Chloroquine prophylaxis taken by soldiers during their time in the malarious region adequately suppressed any parasites in the blood minimizing the impact of malaria while in the combat zone (Figure 1) but did not kill hypnozoites. The result was many relapse cases long after exposure to the mosquito vectors.1 Due to 1-year tours of duty, most soldiers who contracted malaria during the Korean War were not actually symptomatic while in Korea. Thousands of cases of vivax malaria, mostly in soldiers, appeared in the U.S. beginning mid-year in 1951 (Figure 2), endangering the recently acquired national malaria elimination status. Clearly, better anti-malarial medication was required.

An 8-aminoquinoline, pamaquine, was the original synthetic antimalarial drug but it was judged by the U.S. Army to be too toxic for use because of its association with hemolysis in African American soldiers, many of whom were glucose-6-phosphate dehydrogenase (G6PD) deficient.2 A series of pamaquine analogues were tested by a reactivated antimalarial drug development program which had been initiated during World War II. Using prison volunteers purposely infected with rapidly relapsing vivax malaria strains from the Southwest Pacific, clinical investigators in Illinois rapidly identified a better tolerated 8-aminoquinoline known as primaquine.3,4 Once primaquine had been proven to kill hypnozoites in the liver, it was moved to field trials on troopships of returning Korean War veterans. By 1952, all troop transports had dedicated teams of medics whose function was to see that a 2-week course of primaquine (15 mg daily) was administered to every returning veteran. Within 2 years of implementing this strategy for post-exposure malaria prophylaxis, late vivax relapses in the U.S. had largely ceased due to the administration of primaquine to hundreds of thousands of soldiers.5 Chloroquine and primaquine remained the main antimalarial prophylaxis drugs even into the Vietnam conflict (1965–1972).

Tafenoquine

The emergence of drug-resistant malaria strains during the Vietnam conflict reinvigorated the drug development efforts by the U.S. Department of Defense (DOD) to combat this growing threat. During this effort, scientists from the Walter Reed Army Institute of Research, Division of Experimental Therapeutics (WRAIR/ET), screened thousands of potential new anti-relapse drug candidates to improve on the current standard of care, primaquine.6 During this testing one compound, called WR238605, or tafenoquine, demonstrated desirable properties that appeared superior to those of other pre-clinical candidates and primaquine, and became a lead candidate. Field trials for tafenoquine began in 1998.

After completing extensive pre-clinical and early clinical work, WRAIR/ET transitioned tafenoquine to the U.S. Army Medical Materiel Development Activity (USAMMDA). USAMMDA continued development of tafenoquine in collaboration with WRAIR/ET, its overseas laboratories, and through commercial partnerships, ultimately establishing a cooperative research and development agreement with 60 Degrees Pharmaceutical, LLC (60 Degrees). The partnership culminated in the U.S. Food and Drug Administration (FDA) approval of tafenoquine, (trade name Arakoda) in 2018 as an antimalarial indicated for the prophylaxis of malaria for continuous dosing up to six months in patients aged 18 years and older.7 Also in 2018, the FDA approved the use of tafenoquine (trade name Krintafel) for anti-relapse therapy of P. vivax in patients aged 16 years and older.8

Over the last decade, the DOD has seen relativity few cases of malaria, typically between 30 to 60 cases annually.9 Although cases of Plasmodium falciparum malaria acquired in Africa have become more common than cases caused by other species, the numbers of cases associated with service in South Korea and Afghanistan (almost exclusively P. vivax) have accounted for about 25% of the recent annual totals. The low case numbers are likely attributable to the reduced presence of U.S. Armed Forces in Afghanistan and Iraq in recent years, force health protection (FHP) measures to counter the threat from the mosquito vectors, such as permethrin treated uniforms and bed nets, and command discipline to ensure service members take their chemoprophylaxis and wear uniforms properly. Tafenoquine will likely have a significant role in reducing the number of malaria cases further by increasing compliance, where weekly dosing could be preferred over daily dosing.10

The promise of tafenoquine is based upon several characteristics. First, tafenoquine is effective against all species and life cycle stages of the malaria parasites that infect humans; at this time, there is no known tafenoquine resistance among the 5 Plasmodium species that affect humans. Second, the drug is FDA-approved for up to 6 months of malaria prophylaxis while living or traveling in a malaria region. Third, the effective half-life of the drug in humans is at least 2 weeks. As a result, the frequency of maintenance doses is just weekly. This dosing schedule enhances the likelihood of good compliance, particularly in settings where supervised or observed dosing is desirable, such as in military units. The drug's long half-life provides sufficiently high drug levels to allow for what is called "compliance forgiveness". If a service member misses a weekly dose, there is enough drug remaining in the body to provide protective efficacy until the following scheduled dose. Although it is not recommended to miss a weekly dose, the label instructions specify that, when a weekly dose is omitted, the individual should not take a make-up dose but should simply resume the prophylaxis at the time of the next scheduled dose. Results of clinical trials have suggested that monthly dosing could be a possibility in the future.7,11 Fourth, not only is tafenoquine effective for anti-relapse therapy (post-exposure prophylaxis) against the hypnozoites of P. vivax and Plasmodium ovale, but such therapy requires just a single dose of tafenoquine. This single dose requirement contrasts with the conventional dose schedule of primaquine which must be taken daily for 14 days, a well-known impediment to high levels of patient compliance.12 Moreover, if the weekly prophylaxis while in the malarious area consisted of tafenoquine, no additional anti-relapse therapy would be required.

In December 2019, the Defense Health Agency (DHA) published an update to Deployment Health Procedures, procedural instruction (PI) 6490.03 approving tafenoquine as a second-line malaria prophylaxis countermeasure for FHP.13 This update is the first step in the introduction of tafenoquine to the warfighter. Combatant Commands, such as U.S. Africa Command (AFRICOM) and U.S. Indo-Pacific Command (INDOPACOM) have applied the DHA PI updates and incorporated tafenoquine as a new malaria prophylaxis option in their internal policies. As the drug is administered in the broader military and civilian population and 60 Degrees completes the FDA post-marketing commitments, more information on, and familiarization with, the properties of the drug will be realized and it is expected that DOD's guidance will evolve to integrate the new information.

As noted in PI 6490.03, there are additional factors to consider when contemplating the use of tafenoquine.13 First, tafenoquine (as well as primaquine) should not be prescribed for persons who have G6PD deficiency because of the risk of drug induced hemolytic anemia. Current DOD policy provides for the routine screening of all service members for G6PD deficiency and for documentation of the results in the service members' individual health records. Second, current FDA approval of tafenoquine for chemoprophylaxis specifies a duration of use of no more than 6 months; however, there are ongoing post-marketing studies to extend the duration of use to 12 months.14

Editorial Comments

Malaria relapses are an adaptation of the parasite to survive between transmission seasons through latency in the liver followed by reactivation months to even a year after infection. Many U.S. Army veterans who served in the Southwest Pacific during the World War II reported greater than 20 separate malaria episodes triggered by relapses from the liver despite taking chemo-suppressive medications. Pamaquine was too toxic for use but its better tolerated cousin primaquine largely solved the problem of post-deployment relapses during the Korean War. Efficacious medications are only part of the equation needed for force health protection. Better tolerated drugs that could be given infrequently enough (e.g., weekly as opposed to daily) so as to facilitate supervised administration of the medication (directly observed therapy) are also desirable.

Despite a very long developmental history, tafenoquine is now available to replace primaquine as a better tolerated medication to treat soldiers infected with relapsing malaria.14 In addition, the very long (2-week) half-life of tafenoquine allows it to be given weekly (200mg in adults) for reliable chemoprophylaxis following a 3-day loading dose regimen consisting of 200 mg per day for a total of 600 mg. It seems likely, based on work in the Royal Thai Army, that tafenoquine monthly regimens may eventually be devised which would further increase compliance and thus effectiveness.11 Anti-relapse therapy consists of a single dose of 300 mg of tafenoquine taken after departure from the area of malaria risk. Further work at WRAIR/ET is being conducted with the aim of finding a regimen or combination that can be safely given to G6PD-deficient individuals, but currently tafenoquine is limited to those known to have adequate G6PD activity by laboratory measurement. Tafenoquine is effective against all malaria species and life cycle stages of the malaria parasite that infect humans, has no known malaria resistance, and provides a convenient dosing regimen, all of which will likely result in vastly improved compliance and effectiveness in the prevention of malaria in U.S. service members. Whether tafenoquine will have a major role in public health efforts to eliminate malaria globally remains to be seen, but tafenoquine is certainly a major advance in FHP against malaria for soldiers deployed to endemic areas.

Author affiliations: U.S. Army Medical Materiel Development Activity (MAJ Zottig); Australian Defence Force Malaria and Infectious Diseases Institute, Enoggera, QLD, Australia (Dr. Shanks).

Acknowledgements: The authors thank all those who worked to bring tafenoquine to registration for malaria chemoprophylaxis and treatment.

Disclaimer: The opinions expressed are those of the authors and do not necessarily reflect those of the Australian Defence Force or the U.S. Department of Defense. Discussion of specific pharmaceutical products does not reflect an endorsement of those products.

Conflict of interest: The authors do not claim any conflict of interest.

Funding: Authors are employees of the U.S. Department of Defense or the Australian Defence Organization. No specific funding was given for this historical study.

References

  1. Marshall IH. Malaria in Korea. In: Recent Advances in Medicine and Surgery Based on Professional Medical Experiences in Japan and Korea 1950–1953. Vol 2. Washington, DC: US Army;1954:270–283. Accessed 13 August 2020. https://history.amedd.army.mil/booksdocs/korea/recad2/recadvol2.html
  2. Hockwald RS, Arnold J, Clayman CB, Alving AS. Toxicity of primaquine in Negroes. J Am Med Assoc. 1952;149(17):1568–1570. 
  3. Alving AS, Arnold J, Robinson DH. Mass therapy of subclinical vivax malaria with primaquine. J Am Med Assoc. 1952;149(17):1558–1562. 
  4. Garrison PL, Hankey DD, Coker WG, et al. Cure of Korean vivax malaria with pamaquine and primaquine. J Am Med Assoc. 1952;149(17):1562–1563.
  5. Archambeault CP. Mass antimalarial therapy in veterans returning from Korea. J Am Med Assoc. 1954;154(17):1411–1415. 
  6. Milhous WK, Schuster BG. Malaria studies aim at drug resistance. US Med. 1990;26:27–28.
  7. U.S. Food & Drug Administration Administration. Drugs@FDA: FDA-Approved Drugs: ARAKODATM. Accessed 16 November 2020. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&varApplNo=210607
  8. U.S. Food & Drug Administration Administration. Drugs@FDA: FDA-Approved Drugs: KRINTAFELTM. Accessed 16 November 2020. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=210795
  9. Armed Forces Health Surveillance Branch. Update:Malaria, U.S. Armed Forces, 2019. MSMR.2020;27(2):2–7. 
  10. Tan KR, Magill AJ, Parise ME, Arguin PM. Doxycycline for malaria chemoprophylaxis and treatment: Report from the CDC expert meeting on malaria chemoprophylaxis. Am J Trop Med Hyg 2011; 84(4):517–531.
  11.  Walsh DS, Eamsila C, Sasiprapha T, et al. Efficacy of monthly tafenoquine for prophylaxis of Plasmodium vivax and multidrug-resistant P. falciparum malaria. J Infect Dis. 2004;190(8):1456–1463. 
  12. Kotwal RS, Wenzel RB, Sterling RA, et al. An outbreak of malaria in US Army Rangers returning from Afghanistan. JAMA. 2005; 293(2):212–216. Erratum in: JAMA. 2005: 293(6):678.
  13. Defense Health Agency. Procedural Instruction 6490.03. Deployment Health Procedures. 17 December 2019.
  14. Tan KR, Hwang J. Tafenoquine receives regulatory approval in USA for prophylaxis of malaria and radical cure of Plasmodium vivax. J Travel Med. 2018;25(1).
    FIGURE 1. Malaria in U.S. Army personnel in Korea, by month, July 1950–January 1954 

 

FIGURE 2. Malaria morbidity in the U.S, by month, 1951–1953

 

You also may be interested in...

Surveillance Snapshot: Illness and Injury Burdens, Reserve Component, U.S. Armed Forces, 2018

Article
5/1/2019
U.S. Navy sailors graduate from boot camp at Recruit Training Command (RTC) in 2018. (Photo courtesy of U.S. Navy)

Recommended Content:

Medical Surveillance Monthly Report

Modeling Lyme Disease Host Animal Habitat Suitability, West Point, New York

Article
4/1/2019
A deer basks in the morning sun at Joint Base San Antonio-Fort Sam Houston, Texas.  (Photo Courtesy: U.S. Air Force)

As the most frequently reported vector-borne disease among active component U.S. service members, with an incidence rate of 16 cases per 100,000 person-years in 2011, Lyme disease poses both a challenge to health care providers in the Military Health System and a threat to military readiness. Spread through the bite of an infected blacklegged tick, infection with the bacterial cause of Lyme disease can have lasting effects that may lead to medical discharge from the military. The U.S. Military Academy at West Point is situated in a highly endemic area in New York State. To identify probable areas where West Point cadets as well as active duty service members stationed at West Point and their families might contract Lyme disease, this study used Geographic Information System mapping methods and remote sensing data to replicate an established spatial model to identify the likely habitat of a key host animal—the white-tailed deer.

Recommended Content:

Medical Surveillance Monthly Report

Incidence, Timing, and Seasonal Patterns of Heat Illnesses During U.S. Army Basic Combat Training, 2014–2018

Article
4/1/2019
U.S. Marines participate in morning physical training during a field exercise at Marine Corps Base Camp Pendleton, California. (Photo Courtesy: U.S. Marine Corps)

Risk factors for heat illnesses (HIs) among new soldiers include exercise intensity, environmental conditions at the time of exercise, a high body mass index, and conducting initial entry training during hot and humid weather when recruits are not yet acclimated to physical exertion in heat. This study used data from the Defense Health Agency’s–Weather-Related Injury Repository to calculate rates and to describe the incidence, timing, and geographic distribution of HIs among soldiers during U.S. Army basic combat training (BCT). From 2014 through 2018, HI events occurred in 1,210 trainees during BCT, resulting in an overall rate of 3.6 per 10,000 BCT person-weeks (p-wks) (95% CI: 3.4–3.8). HI rates (cases per 10,000 BCT p-wks) varied among the 4 Army BCT sites: Fort Benning, GA (6.8); Fort Jackson, SC (4.4); Fort Sill, OK (1.8); and Fort Leonard Wood, MO (1.7). Although the highest rates ofHIs occurred at Fort Benning, recruits in all geographic areas were at risk. The highest rates of HI occurred during the peak training months of June through Sept., and over half of all HI cases affected soldiers during the first 3 weeks of BCT. Prevention of HI among BCT soldiers requires relevant training of both recruits and cadre as well as the implementation of effective preventive measures.

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Hyponatremia, Active Component, U.S. Armed Forces, 2003–2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

From 2003 through 2018, there were 1,579 incident diagnoses of exertional hyponatremia among active component service members, for a crude overall incidence rate of 7.2 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, females, those less than 20 years old, and recruit trainees had higher overall incidence rates of exertional hyponatremia diagnoses. The overall incidence rate during the 16-year period was highest in the Marine Corps, intermediate in the Army and Air Force, and lowest in the Navy. Overall rates during the surveillance period were highest among Asian/Pacific Islander and non-Hispanic white service members and lowest among non-Hispanic black service members. Between 2003 and 2018, crude annual incidence rates of exertional hyponatremia peaked in 2010 (12.7 per 100,000 p-yrs) and then decreased to 5.3 cases per 100,000 p-yrs in 2013 before increasing in 2014 and 2015. The crude annual rate in 2018 (6.3 per 100,000 p-yrs) represented a decrease of 26.5% from 2015. Service members and their supervisors must be knowledgeable of the dangers of excessive water consumption and the prescribed limits for water intake during prolonged physical activity (e.g., field training exercises, personal fitness training, and recreational activities) in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 14 > >> 
Showing results 181 - 195 Page 13 of 14
Refine your search
Last Updated: October 14, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery