Skip to main content

Military Health System

Incidence and Prevalence of Selected Refractive Errors, Active Component, U.S. Armed Forces, 2001–2018

Image of U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris). U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Abstract

During 2001–2018, there were approximately 1.38 million incident diagnoses of myopia, 1.21 million incident diagnoses of astigmatism, and 492,000 incident diagnoses of hyperopia among active component service members (crude overall incidence rates of 7.8, 6.6, and 2.2 diagnoses per 100 person-years, respectively). Incidence rates of all 3 conditions were higher among women compared to men. Service members in the Marine Corps, enlisted personnel, and those working in other/unknown military occupations had higher overall rates of incident myopia diagnoses compared to their respective counterparts. Incidence rates of astigmatism diagnoses were similar across all services and among both enlisted personnel and officers. Overall rates of hyperopia diagnoses were similar across all race/ethnicity groups and service branches and among both enlisted personnel and officers. However, across occupational groups, overall rates of hyperopia and astigmatism diagnoses were highest among service members working in health care occupations. Future analyses should focus on the specific effects of military refractive surgery programs on the readiness of service members.

What Are the Findings?

This article updates previous reports and focuses on the types of refractive error amenable to refractive surgery interventions. During 2001–2018, myopia and astigmatism were the most common refractive errors at 1.4 million and 1.2 million incident diagnoses, respectively, among active component service members of all occupational groups. The crude annual lifetime prevalence was 38.5% for myopia and 32.9% for astigmatism.

What Is the Impact on Readiness and Force Health Protection?

Disorders of refraction directly affect the ability to function in a military environment. Myopia, astigmatism, and hyperopia remain a consistent concern for the operational force. The data presented here allow for ongoing monitoring of refractive error to direct interventions such as refractive surgery.

Background

Refractive errors are a common cause of impaired vision. The World Health Organization estimates that 153 million people worldwide live with visual impairment due to uncorrected refractive errors.1Refractive errors occur when the focusing power of the eye does not allow for a sharp image on the retina, resulting in a blurred image and loss of detail. Myopia typically results from a longer axial length of the eye, causing images to be defocused in front of the retina and faraway objects to appear blurry. Hyperopia is usually due to a shorter axial length of the eye, causing an image to be defocused at a point behind the retina and resulting in distant objects being seen more clearly than objects that are near. Astigmatism typically results from variable curvature of the corneal surface, causing an image to be defocused along multiple points of the optical pathway.

Optimal visual performance in the setting of refractive error usually requires correction, either through eyeglasses, contact lenses, or refractive surgery. Uncorrected refractive errors can negatively affect functioning, quality of life, and work productivity.2 Refractive errors have been linked to increased ocular morbidity; for example, myopia is a known risk factor in the development of retinal detachment, even at low levels of refractive error.3

Across military populations, refractive errors have multiple implications for readiness and operational effectiveness. Suboptimal visual acuity due to refractive error has been shown to affect target discrimination (positive identification) and marksmanship performance among military personnel.4 Effects of refractive error on visual performance and associated ocular disease increase with higher degrees of refractive error. As a result, individuals with hyperopia, myopia, or astigmatism in excess of -8.00 or +8.00 diopters spherical equivalent, astigmatism in excess of 3.00 diopters, or a history of laser refractive surgery for that degree of refractive error do not meet the medical standards for appointment, enlistment, or induction into U.S. military service.5

In military populations, adequate characterization of the magnitude and trends of refractive errors may inform readiness and performance enhancement efforts such as refractive surgery programs. Adequate characterization may also inform planning for refraction and optical fabrication resources. In this report, myopia, astigmatism, and hyperopia codes were chosen to approximate the clinically important refractive error categories used in previous publications.6 For military populations, these categories would also be the most relevant since these conditions are potentially amenable to refractive surgery procedures. This report updates the incidence and prevalence rates of newly diagnosed disorders of refraction among members of the active component of the U.S. Armed Forces during 2001–2018.

Methods

The surveillance period was 1 Jan. 2001 to 31 Dec. 2018. The surveillance population included all individuals who served in the active component of the U.S. Army, Navy, Air Force, or Marine Corps at any time during the surveillance period. Diagnoses of disorders of refraction were ascertained from records maintained in the Defense Medical Surveillance System (DMSS) that document outpatient encounters of active component service members. Such records reflect care in fixed military treatment facilities of the Military Health System (MHS) and in civilian sources of health care underwritten by the Department of Defense (DOD).

Case-defining diagnoses are shown in Table 1. Cases of myopia, hyperopia, and astigmatism were analyzed separately. An incident case of refraction disorder was defined by at least 1 outpatient medical encounter with a qualifying diagnosis in either the first or second diagnostic position. The incidence date was considered the date of the first qualifying outpatient encounter and an individual was counted as an incident case only once per lifetime. Service members with case-defining refractive disorder diagnoses before the start of the surveillance period (i.e., prevalent cases) were excluded from the analysis. For the incidence rate calculations, person-time at risk included all active component military service time before the date of incident diagnosis, termination of military service, or the end of the surveillance period, whichever came first. Incidence rates were calculated as incident refractive disorder diagnoses per 100 person-years (p-yrs).

Military lifetime prevalence was estimated for each refraction disorder for each year in the surveillance period. During each year of the 18-year period, the annual prevalence was calculated as the percentage of service members who had ever been diagnosed with the refraction disorder. An individual was identified as a prevalent case during a given year of the surveillance period if he or she was in active component service on 1 July of the given year and was diagnosed as an incident case on or before 1 July of that year (including those who were diagnosed as an incident case before the start of the surveillance period). The denominator for annual prevalence calculations consisted of the total number of service members in active component service on 1 July of each year. Annual prevalence estimates were calculated as the number of prevalent cases per 100 active component service members on 1 July.

Results

Between 2001 and 2018, there were approximately 1.38 million incident diagnoses of myopia, 1.21 million incident diagnoses of astigmatism, and 492,000 incident diagnoses of hyperopia among active component service members, which corresponded to crude (unadjusted) overall incidence rates of 7.8, 6.6, and 2.2 diagnoses per 100 p-yrs, respectively (Table 2).

For myopia, overall incidence was higher among females (11.6 per 100 p-yrs) compared to males (7.2 per 100 p-yrs). When stratified by age group, the overall rate of incident myopia diagnoses was highest among service members aged 19 years or younger (21.2 per 100 p-yrs) (Table 2). Compared to other race/ethnicity groups, Asian/Pacific Islanders had the highest overall incidence of myopia diagnoses (9.8 per 100 p-yrs) and American Indians/Alaska Natives had the lowest (5.2 per 100 p-yrs) (Table 2). Service members in the Marine Corps (8.9 per 100 p-yrs), enlisted personnel (8.0 per 100 p-yrs), and those working in other/unknown military occupations (12.2 per 100 p-yrs) had higher overall rates of incident myopia diagnoses compared to their respective counterparts. The high rate for those in the non-specific category of "other/unknown" was largely due to the fact that 45% (n=187,536) of the cases were among recruit trainees.

Overall incidence of astigmatism diagnoses was highest among females (9.0 per 100 p-yrs) and those in the youngest (19 years and younger: 9.4 per 100 p-yrs) and oldest (55+ years: 8.5 per 100 p-yrs) age groups (Table 2). Overall rates of incident astigmatism diagnoses were lowest among American Indian/Alaska Native service members (4.3 per 100 p-yrs) and similar among service members in the other race/ethnicity groups (range: 6.4–7.2 per 100 p-yrs). Incidence rates of astigmatism diagnoses were similar across all services and among both enlisted personnel and officers. However, across occupational groups, overall rates of incident astigmatism diagnoses were highest among service members working in health care (8.6 per 100 p-yrs).

For hyperopia, overall incidence was higher in females (2.9 per 100 p-yrs) compared to males (2.1 per 100 p-yrs) and highest among those in the oldest age group (aged 55 years and older: 5.0 per 100 p-yrs). Overall rates of hyperopia diagnoses were similar across all race/ethnicity groups, service branches, and among both enlisted personnel and officers. However, overall incidence of this condition was highest among service members in health care occupations (Table 2).

Crude annual rates of incident diagnoses of myopia and astigmatism decreased 40.9% and 41.3%, respectively, between 2001 and 2010. Incidence rates then increased 15.9% and 50.0% for myopia and astigmatism, respectively, between 2010 and 2018 (Figure 1). The crude annual incidence of hyperopia diagnoses increased slightly over the course of the surveillance period, from 1.8 per 100 p-yrs in 2001 to 2.6 per 100 p-yrs in 2018.

During the 18-year surveillance period, the median crude annual prevalence was 38.5% for myopia, 32.9% for astigmatism, and 12.0% for hyperopia (data not shown). In both sexes, the median crude annual lifetime prevalence of each type of eye disorder of refraction increased with increasing age (Table 3). For myopia and astigmatism, crude annual prevalence rates increased markedly between 2001 and 2007 before leveling off and remaining relatively stable for the remainder of the surveillance period (Figure 2). In contrast, crude annual prevalence rates of hyperopia increased gradually over the course of the surveillance period.

Editorial Comment

This report demonstrates the high frequency of myopia, astigmatism, and hyperopia among active component service members across all subgroups examined. Results of the current analysis were consistent with findings of the previous MSMR report.6 Analysis of vision examination data from the 1999–2004 U.S. National Health and Nutrition Examination Survey (NHANES) yielded age-adjusted point prevalence estimates of myopia, astigmatism, and hyperopia of 33.1%, 36.2%, and 3.6%, respectively.7 The prevalence of hyperopia was considerably higher in the current analysis. However, the current analysis measured lifetime prevalence whereas the NHANES measured point prevalence (i.e., the percentage of the U.S. population with current hyperopia).7

The impact of refractive error on military members can be different than on other populations. Military personnel have defined and demanding physical performance criteria. Service members are frequently classified as "tactical athletes" because of high physical performance demands under stressful conditions often in austere environments.8 Refractive error, even when corrected, has been shown to negatively affect both depth perception and peripheral vision in young athletes.9 Many athletes will prefer either use of contact lenses or refractive surgery over eyeglasses.10

Certain limitations should be considered when interpreting the findings of this report. First, service members are, in many respects, not representative of the general U.S. civilian population. Because service members have been screened for disorders of refraction before joining the military, the visual disorders diagnosed among them do not include the most severe conditions. In addition, refractory surgery among the general civilian population has become more common, and candidates for military service may elect to have refractive surgery before entering service. This could decrease the incidence and prevalence of refractive error over time. Further analysis is planned to specifically evaluate the incidence and temporal trends of refractive error among the recruit trainee population. Such an analysis may provide better insight into the incidence of refractive error among individuals entering the military during the surveillance period.

Refractive surgery procedures after entering the military may also influence the prevalence of refractive errors. For example, a recent report showed that the number of refractive procedures (both photorefractive keratectomy [PRK]/laser epithelial keratomileusis [LASEK] and laser-assisted in-situ keratomileusis [LASIK]) among active component service members averaged 12,157 per year from 2005 through 2014.11 However, the direct impact of refractive procedures among service members on incidence and prevalence of refractive error was not evaluated in this report. Extrapolation of the findings of the current analysis to the general U.S. population should be undertaken with this limitation in mind.

The increasing prevalence of hyperopia found in this report may be due to increasing age among the surveillance population. Hyperopia incidence increases over time because of changes in the optical system of the eye associated with aging. However, the current report did not examine the potential change in age among cases of hyperopia during the study period.

Another limitation is related to the new electronic health record for the MHS, MHS GENESIS, which was implemented at several military treatment facilities during 2017. Medical data from sites that are using MHS GENESIS are not available in the DMSS. These sites include Naval Hospital Oak Harbor, Naval Hospital Bremerton, Air Force Medical Services Fairchild, and Madigan Army Medical Center. Therefore, medical encounters for individuals seeking care at any of these facilities during 2017–2018 were not included in this analysis.

This analysis did not attempt to ascertain the nature or frequency of any corrective measures of treatments, such as prescriptions for contact lenses or corrective surgery. For active component service members, contact lens use is limited to few operational situations.11 Some aviation personnel require contact lens correction of refractive error for optimal use of instruments. Contact lens use in austere locations has been associated with high risk for microbial keratitis.12 Refractive surgery has been associated with both improved military readiness and vision-related quality of life (including military-specific tasks such as use of night vision goggles and weapons-based tasks).13 However, refractive surgery services are limited by location and necessary prioritization of resources. The correction of refractive errors in U.S. military personnel to optimize their readiness and performance does present some ongoing challenges. Future studies should focus on the specific effects of military refractive surgery programs on readiness of service members.

In addition, because refractive surgery has become very common in the general population, the proportion of incoming recruits with refractive errors may be decreasing over time. A history of refractive surgery is not disqualifying from military service and having had such surgery may not be disclosed at the time of entry into military service or documented in a recruit’s medical records. If the proportion of recruit trainees with (uncorrected) refractive error has been decreasing, then the prevalence across the active component force would decrease over time. Such declining prevalence could affect the refractive surgery programs across the DOD. Future examination of recent trends in the prevalence of refractive disorders among recruits is warranted.

Author affiliations: Department of Defense/Veterans Affairs Vision Center of Excellence, Defense Health Agency Research and Development Directorate (COL Reynolds); Armed Forces Health Surveillance Branch, Defense Health Agency (Dr. Taubman, Dr. Stahlman)

Disclaimer: The contents, views, or opinions expressed in this publication are those of the author(s) and do not necessarily reflect the official policy or position of the Defense Health Agency, Department of Defense, or the U.S. Government.

References

  1. Resnikoff S, Pascolini D, Mariotti SP, Pokharel GP. Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ. 2008;86(1):63–70.
  2. Schneider J, Leeder SR, Gopinath B, Wang JJ, Mitchell P. Frequency, course, and impact of correctable visual impairment (uncorrected refractive error). Surv Ophthalmol. 2010;55(6):539–560.
  3. The Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. Am J Epidemiol. 1993;137(7)49–57.
  4. Hatch BC, Hilber DJ, Elledge JB, Stout JW, Lee RB. The effects of visual acuity on target discrimination and shooting performance. Optom Vis Sci. 2009;86(12): e1359–e1367.
  5. Office of the Under Secretary of Defense for Personnel and Readiness. Department of Defense Instruction 6130.03 Medical Standards for Appointment, Enlistment, or Induction in the Military Services. 6 May 2018.
  6. O’Donnell FL, Taubman SB, Clark LL. Incidence and prevalence of diagnoses of eye disorders of refraction and accommodation, active component service members, U.S. Armed Forces, 2000–2014. MSMR. 2015;22(3):11–16.
  7. Vitale S, Sperduto RD, Ferris FL 3rd. Increased prevalence of myopia in the United States between 1971–1972 and 1999–2004. Arch Ophthalmol. 2009;127(12):1632–1639.
  8. Sefton JM, Burkhardt TA. Introduction to the Tactical Athlete Special Issue. J Athl Train. 2016;51(11):845.
  9. Chang ST, Liu YH, Lee JS, See LC. Comparing sports vision among three groups of soft tennis adolescent athletes: normal vision, refractive error with and without correction. Indian J Ophthalmol. 2015;63(9):716–721.
  10. Zeri F, Pitzalis S, Di Vizio A, et al. Refractive error and vision correction in a general sports-playing population. Clin Exp Optom. 2018;101(2):225–236.
  11. Blitz JB, Hunt DJ, Cost AA. Post-refractive surgery complications and eye disease, active component, U.S. Armed Forces, 2005–2014. MSMR. 2016;23(5):2–11.
  12. Musa F, Tailor R, Gao A, Hutley E, Rauz S, Scott RA. Contact lens-related microbial keratitis in deployed British military personnel. Br J Ophthalmol. 2010;94(8):988–993.
  13. Sia RK, Ryan DS, Rivers BA, et al. Vision-related quality of life and perception of military readiness and capabilities following refractive surgery among active duty U.S. military service members.J Refract Surg. 2018;34(9):597–603.

Annual rates of incident diagnoses of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

Annual prevalence rates of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

ICD-9 and ICD-10 diagnostic codes used to identify disorders of refraction

Incident diagnoses and incidence ratesa of eye disorders of refraction, active component, U.S. Armed Forces, 2001–2018

Median annual prevalencea of disorders of refraction and accommodation, by age group and sex, active component, U.S. Armed Forces, 2001–2018

You also may be interested in...

Update: Exertional Rhabdomyolysis, Active Component, U.S. Armed Forces, 2014–2018

Article
4/1/2019
U.S. Marines sprint uphill during a field training exercise at Marine Corps Air Station Miramar, California. to maintain contact with an aviation combat element, teaching and sustaining their proficiency in setting up and maintaining communication equipment.  (Photo Courtesy: U.S. Marine Corps)

Among active component service members in 2018, there were 545 incident diagnoses of rhabdomyolysis likely due to exertional rhabdomyolysis, for an unadjusted incidence rate of 42.0 cases per 100,000 person-years. Subgroup-specific rates in 2018 were highest among males, those less than 20 years old, Asian/Pacific Islander service members, Marine Corps and Army members, and those in combat-specific or “other/unknown” occupations. During 2014–2018, crude rates of exertional rhabdomyolysis increased steadily from 2014 through 2016 after which rates declined slightly in 2017 before increasing again in 2018. Compared to service members in other race/ethnicity groups, the overall rate of exertional rhabdomyolysis was highest among non-Hispanic blacks in every year except 2018. Overall and annual rates were highest among Marine Corps members, intermediate among those in the Army, and lowest among those in the Air Force and Navy. Most cases of exertional rhabdomyolysis were diagnosed at installations that support basic combat/recruit training or major ground combat units of the Army or the Marine Corps. Medical care providers should consider exertional rhabdomyolysis in the differential diagnosis when service members (particularly recruits) present with muscular pain or swelling, limited range of motion, or the excretion of dark urine (possibly due to myoglobinuria) after strenuous physical activity, particularly in hot, humid weather.

Recommended Content:

Medical Surveillance Monthly Report

Update: Heat Illness, Active Component, U.S. Armed Forces, 2018

Article
4/1/2019
Drink water the day before and during physical activity or if heat is going to become a factor. (Photo Courtesy: U.S. Air Force)

In 2018, there were 578 incident diagnoses of heat stroke and 2,214 incident diagnoses of heat exhaustion among active component service members. The overall crude incidence rates of heat stroke and heat exhaustion diagnoses were 0.45 cases and 1.71 cases per 1,000 person-years, respectively. In 2018, subgroup-specific rates of incident heat stroke diagnoses were highest among males and service members less than 20 years old, Asian/Pacific Islanders, Marine Corps and Army members, recruit trainees, and those in combat-specific occupations. Subgroup-specific incidence rates of heat exhaustion diagnoses in 2018 were notably higher among service members less than 20 years old, Asian/Pacific Islanders, Army and Marine Corps members, recruit trainees, and service members in combat-specific occupations. During 2014–2018, a total of 325 heat illnesses were documented among service members in Iraq and Afghanistan; 8.6% (n=28) were diagnosed as heat stroke. Commanders, small unit leaders, training cadre, and supporting medical personnel must ensure that the military members whom they supervise and support are informed about the risks, preventive countermeasures, early signs and symptoms, and first-responder actions related to heat illnesses.

Recommended Content:

Medical Surveillance Monthly Report

Vasectomy and Vasectomy Reversals, Active Component, U.S. Armed Forces, 2000–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

During 2000–2017, a total of 170,878 active component service members underwent a first-occurring vasectomy, for a crude overall incidence rate of 8.6 cases per 1,000 person-years (p-yrs). Among the men who underwent incident vasectomy, 2.2% had another vasectomy performed during the surveillance period. Compared to their respective counterparts, the overall rates of vasectomy were highest among service men aged 30–39 years, non-Hispanic whites, married men, and those in pilot/air crew occupations. Male Air Force members had the highest overall incidence of vasectomy and men in the Marine Corps, the lowest. Crude annual vasectomy rates among service men increased slightly between 2000 and 2017. The largest increases in rates over the 18-year period occurred among service men aged 35–49 years and among men working as pilots/air crew. Among those who underwent vasectomy, 1.8% also had at least 1 vasectomy reversal during the surveillance period. The likelihood of vasectomy reversal decreased with advancing age. Non-Hispanic black and Hispanic service men were more likely than those of other race/ethnicity groups to undergo vasectomy reversals.

Recommended Content:

Medical Surveillance Monthly Report

Testosterone Replacement Therapy Use Among Active Component Service Men, 2017

Article
3/1/2019
Image of Marines carrying a wooden log for physical fitness. Click to open a larger version of the image.

This analysis summarizes the prevalence of testosterone replacement therapy (TRT) during 2017 among active component service men by demographic and military characteristics. This analysis also determines the percentage of those receiving TRT in 2017 who had an indication for receiving TRT using the 2018 American Urological Association (AUA) clinical practice guidelines. In 2017, 5,093 of 1,076,633 active component service men filled a prescription for TRT, for a period prevalence of 4.7 per 1,000 male service members. After adjustment for covariates, the prevalence of TRT use remained highest among Army members, senior enlisted members, warrant officers, non-Hispanic whites, American Indians/Alaska Natives, those in combat arms occupations, healthcare workers, those who were married, and those with other/unknown marital status. Among active component male service members who received TRT in 2017, only 44.5% met the 2018 AUA clinical practice guidelines for receiving TRT.

Recommended Content:

Medical Surveillance Monthly Report

Brief Report: Male Infertility, Active Component, U.S. Armed Forces, 2013–2017

Article
3/1/2019
Sperm is the male reproductive cell  Photo: iStock

Infertility, defined as the inability to achieve a successful pregnancy after 1 year or more of unprotected sexual intercourse or therapeutic donor insemination, affects approximately 15% of all couples. Male infertility is diagnosed when, after testing both partners, reproductive problems have been found in the male. A male factor contributes in part or whole to about 50% of cases of infertility. However, determining the true prevalence of male infertility remains elusive, as most estimates are derived from couples seeking assistive reproductive technology in tertiary care or referral centers, population-based surveys, or high-risk occupational cohorts, all of which are likely to underestimate the prevalence of the condition in the general U.S. population.

Recommended Content:

Medical Surveillance Monthly Report

Sexually Transmitted Infections, Active Component, U.S. Armed Forces, 2010–2018

Article
3/1/2019
Anopheles merus

This report summarizes incidence rates of the 5 most common sexually transmitted infections (STIs) among active component service members of the U.S. Armed Forces during 2010–2018. Infections with chlamydia were the most common, followed in decreasing order of frequency by infections with genital human papillomavirus (HPV), gonorrhea, genital herpes simplex virus (HSV), and syphilis. Compared to men, women had higher rates of all STIs except for syphilis. In general, compared to their respective counterparts, younger service members, non-Hispanic blacks, soldiers, and enlisted members had higher incidence rates of STIs. During the latter half of the surveillance period, the incidence of chlamydia and gonorrhea increased among both male and female service members. Rates of syphilis increased for male service members but remained relatively stable among female service members. In contrast, the incidence of genital HPV and HSV decreased among both male and female service members. Similarities to and differences from the findings of the last MSMR update on STIs are discussed.

Recommended Content:

Medical Surveillance Monthly Report

Outbreak of Acute Respiratory Illness Associated with Adenovirus Type 4 at the U.S. Naval Academy, 2016

Article
2/1/2019
Malaria case definition

Human adenoviruses (HAdVs) are known to cause respiratory illness outbreaks at basic military training (BMT) sites. HAdV type-4 and -7 vaccines are routinely administered at enlisted BMT sites, but not at military academies. During Aug.–Sept. 2016, U.S. Naval Academy clinical staff noted an increase in students presenting with acute respiratory illness (ARI). An investigation was conducted to determine the extent and cause of the outbreak. During 22 Aug.–11 Sept. 2016, 652 clinic visits for ARI were identified using electronic health records. HAdV-4 was confirmed by real-time polymerase chain reaction assay in 18 out of 33 patient specimens collected and 1 additional HAdV case was detected from hospital records. Two HAdV-4 positive patients were treated for pneumonia including 1 hospitalized patient. Molecular analysis of 4 HAdV-4 isolates identified genome type 4a1, which is considered vaccine-preventable. Understanding the impact of HAdV in congregate settings other than enlisted BMT sites is necessary to inform discussions regarding future HAdV vaccine strategy.

Recommended Content:

Medical Surveillance Monthly Report

Update: Incidence of Glaucoma Diagnoses, Active Component, U.S. Armed Forces, 2013–2017

Article
2/1/2019
Glaucoma

Glaucoma is an eye disease that involves progressive optic nerve damage and vision loss, leading to blindness if undetected or untreated. This report describes an analysis using the Defense Medical Surveillance System to identify all active component service members with an incident diagnosis of glaucoma during the period between 2013 and 2017. The analysis identified 37,718 incident cases of glaucoma and an overall incidence rate of 5.9 cases per 1,000 person-years (p-yrs). The majority of cases (97.6%) were diagnosed at an early stage as borderline glaucoma; of these borderline cases, 2.2% progressed to open-angle glaucoma during the study period. No incident cases of absolute glaucoma, or total blindness, were identified. Rates of glaucoma were higher among non-Hispanic black (11.0 per 1,000 p-yrs), Asian/Pacific Islander (9.5), and Hispanic (6.9) service members, compared with non-Hispanic white (4.0) service members. Rates among female service members (6.6 per 1,000 p-yrs) were higher than those among male service members (5.8). Between 2013 and 2017, incidence rates of glaucoma diagnoses increased by 75.4% among all service members.

Recommended Content:

Medical Surveillance Monthly Report

Re-evaluation of the MSMR Case Definition for Incident Cases of Malaria

Article
2/1/2019
Anopheles merus

The MSMR has been publishing the results of surveillance studies of malaria since 1995. The standard MSMR case definition uses Medical Event Reports and records of hospitalizations in counting cases of malaria. This report summarizes the performance of the standard MSMR case definition in estimating incident cases of malaria from 2015 through 2017. Also explored was the potential surveillance value of including outpatient encounters with diagnoses of malaria or positive laboratory tests for malaria in the case definition. The study corroborated the relative accuracy of the MSMR case definition in estimating malaria incidence and provided the basis for updating the case definition in 2019 to include positive laboratory tests for malaria antigen within 30 days of an outpatient diagnosis.

Recommended Content:

Medical Surveillance Monthly Report

Update: Malaria, U.S. Armed Forces, 2018

Article
2/1/2019
Anopheles merus

Malaria infection remains an important health threat to U.S. service mem­bers who are located in endemic areas because of long-term duty assign­ments, participation in shorter-term contingency operations, or personal travel. In 2018, a total of 58 service members were diagnosed with or reported to have malaria. This represents a 65.7% increase from the 35 cases identi­fied in 2017. The relatively low numbers of cases during 2012–2018 mainly reflect decreases in cases acquired in Afghanistan, a reduction due largely to the progressive withdrawal of U.S. forces from that country. The percentage of cases of malaria caused by unspecified agents (63.8%; n=37) in 2018 was the highest during any given year of the surveillance period. The percent­age of cases identified as having been caused by Plasmodium vivax (10.3%; n=6) in 2018 was the lowest observed during the 10-year surveillance period. The percentage of malaria cases attributed to P. falciparum (25.9 %) in 2018 was similar to that observed in 2017 (25.7%), although the number of cases increased. Malaria was diagnosed at or reported from 31 different medical facilities in the U.S., Afghanistan, Italy, Germany, Djibouti, and Korea. Pro­viders of medical care to military members should be knowledgeable of and vigilant for clinical manifestations of malaria outside of endemic areas.

Recommended Content:

Medical Surveillance Monthly Report

Thyroid Disorders, Active Component, U.S. Armed Forces, 2008–2017

Article
12/1/2018
A U.S. naval officer listens through his stethoscope to hear his patient’s lungs at Camp Schwab in Okinawa, Japan in 2018. (Photo courtesy of U.S. Marine Corps) photo by Lance Cpl. Cameron Parks)

This analysis describes the incidence and prevalence of five thyroid disorders (goiter, thyrotoxicosis, primary/not otherwise specified [NOS] hypothyroidism, thyroiditis, and other disorders of the thyroid) among active component service members between 2008 and 2017. During the 10-year surveillance period, the most common incident thyroid disorder among male and female service members was primary/NOS hypothyroidism and the least common were thyroiditis and other disorders of thyroid. Primary/NOS hypothyroidism was diagnosed among 8,641 females (incidence rate: 43.7 per 10,000 person-years [p-yrs]) and 11,656 males (incidence rate: 10.2 per 10,000 p-yrs). Overall incidence rates of all thyroid disorders were 3 to 5 times higher among females compared to males. Among both males and females, incidence of primary/NOS hypothyroidism was higher among non-Hispanic white service members compared with service members in other race/ethnicity groups. The incidence of most thyroid disorders remained stable or decreased during the surveillance period. Overall, the prevalence of most thyroid disorders increased during the first part of the surveillance period and then either decreased or leveled off.31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Incidence and Prevalence of the Metabolic Syndrome Using ICD-9 and ICD-10 Diagnostic Codes, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

This report uses ICD-9 and ICD-10 codes (277.7 and E88.81, respectively) for the metabolic syndrome (MetS) to summarize trends in the incidence and prevalence of this condition among active component members of the U.S. Armed Forces between 2002 and 2017. During this period, the crude overall incidence rate of MetS was 7.5 cases per 100,000 person-years (p-yrs). Compared to their respective counterparts, overall incidence rates were highest among Asian/Pacific Islanders, Air Force members, and warrant officers and were lowest among those of other/unknown race/ethnicity, Marine Corps members, and junior enlisted personnel and officers. During 2002–2017, the annual incidence rates of MetS peaked in 2009 at 11.6 cases per 100,000 p-yrs and decreased to 5.9 cases per 100,000 p-yrs in 2017. Annual prevalence rates of MetS increased steadily during the first 11 years of the surveillance period reaching a high of 38.9 per 100,000 active component service members in 2012, after which rates declined slightly to 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report

Adrenal Gland Disorders, Active Component, U.S. Armed Forces, 2002–2017

Article
12/1/2018

During 2002–2017, the most common incident adrenal gland disorder among male and female service members was adrenal insufficiency and the least common was adrenomedullary hyperfunction. Adrenal insufficiency was diagnosed among 267 females (crude overall incidence rate: 8.2 cases per 100,000 person-years [p-yrs]) and 729 males (3.9 per 100,000 p-yrs). In both sexes, overall rates of other disorders of adrenal gland and Cushing’s syndrome were lower than for adrenal insufficiency but higher than for hyperaldosteronism, adrenogenital disorders, and adrenomedullary hyperfunction. Crude overall rates of adrenal gland disorders among females tended to be higher than those of males, with female:male rate ratios ranging from 2.1 for adrenal insufficiency to 5.5 for androgenital disorders and Cushing’s syndrome. The highest overall rates of adrenal insufficiency for males and females were among non-Hispanic white service members. Among females, rates of Cushing's syndrome and other disorders of adrenal gland were 31.6 per 100,000 active component service members in 2017. Validation of ICD-9/ICD-10 diagnostic codes for MetS using the National Cholesterol Education Program Adult Treatment Panel III criteria is needed to establish the level of agreement between the two methods for identifying this condition.

Recommended Content:

Medical Surveillance Monthly Report
<< < ... 11 12 13 > >> 
Showing results 181 - 193 Page 13 of 13
Refine your search
Last Updated: October 31, 2022
Follow us on Instagram Follow us on LinkedIn Follow us on Facebook Follow us on Twitter Follow us on YouTube Sign up on GovDelivery