Back to Top Skip to main content Skip to sub-navigation

Blood Lead Level Surveillance Among Pediatric Beneficiaries in the Military Health System, 2010–2017

U.S. Air Force Staff Sgt. Katie Duff, a medical technician with the 193rd Special Operations Wing's Medical Group, pricks the finger of brave 23-month old Kahia Inman, while his mother Malia Duvauchelle holds him during a free health screening. (U.S. Air Force photo by Tech. Sgt. Culeen Shaffer) U.S. Air Force Staff Sgt. Katie Duff, a medical technician with the 193rd Special Operations Wing's Medical Group, pricks the finger of brave 23-month old Kahia Inman, while his mother Malia Duvauchelle holds him during a free health screening. (U.S. Air Force photo by Tech. Sgt. Culeen Shaffer)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

The EpiData Center (EDC) has provided routine blood lead level (BLL) surveillance for Department of Defense (DoD) pediatric beneficiaries since 2011. Data for this study were collected and compiled from raw laboratory test records obtained from the Composite Health Care System Health Level 7 (HL7)-formatted chemistry data, allowing an overview of the number of tests performed and the number of elevated results. Between 2010 and 2017, there were 177,061 tests performed among 162,238 pediatric beneficiaries tested. Using only the highest test result per year for each individual, 169,917 tests were retained for analysis, of which 1,334 (0.79%) test results were considered elevated. The percentage of children with elevated BLLs generally decreased over the time period for children of every service affiliation. All tests throughout this time frame were evaluated using current standards and the protocol followed by the Centers for Disease Control and Prevention and the Department of the Navy (DON). The adoption of a standardized BLL surveillance methodology across the DoD supports a cohesive approach to an evolving public health surveillance topic.

WHAT ARE THE NEW FINDINGS?   

The EDC’s BLL surveillance program established a methodology for lead exposure surveillance among DoD pediatric beneficiaries, providing critical data and valuable historical context for the interpretation of findings. Between 2010 and 2017, the percentage of children with elevated BLLs generally remained below 1.2%, and by 2017, the overall percentage was 0.5% for all children tested.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Blood lead surveillance of DON pediatric beneficiaries is required under Bureau of Medicine and Surgery instruction 6200.14D. The EDC’s methodology for BLL surveillance may be leveraged for consistent BLL surveillance across the DoD.

BACKGROUND

Robust lead exposure surveillance is especially important in pediatric populations. There is no safe blood lead level (BLL) for children; even very low BLLs can increase the risk of harmful hematologic and neurologic effects.1 The U.S. Preventive Services Task Force concluded there is currently insufficient evidence to recommend BLL screening of asymptomatic children 5 years of age and younger.2 The Military Health System (MHS) does not require universal BLL screening for pediatric beneficiaries, but providers are directed to consider assessing the risk of lead exposure among children between 6 months and 6 years of age by parental questionnaire, in accordance with recommendations from the American Academy of Pediatrics.3 Children who screen positive on this questionnaire should have their BLLs tested. Additionally, clinical suspicion of lead exposure or poisoning should prompt a blood lead test. Providers should ensure the performance of follow-up care for any child with an elevated BLL, and retesting is recommended to confirm an initial elevated BLL and to monitor the decline in BLLs following treatment.4

Before 2012, a BLL of 10 µg/dL or greater was considered to be an elevated test result.In 2012, the Centers for Disease Control and Prevention (CDC) updated the guidelines for the blood lead reference value (BLRV) to 5 µg/dL or greater, based on National Health and Nutrition Examination Survey results showing declining BLLs in children.6 For an elevated BLL (5 µg/dL or greater) to be considered “confirmed,” CDC requires 1 elevated result from a venous blood test or 2 elevated results from capillary blood tests within 12 weeks.7 Traditional blood lead laboratory test results are the preferred test for Department of the Navy (DON) BLL surveillance. Rapid testing results, like finger-stick tests obtained by MHS providers at the point of care, were used for BLL surveillance purposes until 30 August 2017 when the Bureau of Medicine and Surgery (BUMED) released an instruction stating point-of-care blood testing devices were no longer authorized for compliance with the childhood lead poisoning prevention program in the DON.8

Since 2011, the EpiData Center (EDC) at the Navy and Marine Corps Public Health Center (NMCPHC) has conducted routine BLL surveillance among Department of Defense (DoD) pediatric beneficiaries on a quarterly basis. An annual report based on data at the military treatment facility (MTF) level is also prepared on DON pediatric beneficiaries at the request of the Occupational and Environmental Medicine Department of NMCPHC. All surveillance reports are available to qualified DoD personnel upon request. The EDC’s BLL surveillance program provides critical data and valuable historical context for evaluating lead exposure among DoD pediatric beneficiaries.

This article describes the EDC’s methodology for BLL surveillance in DoD pediatric beneficiaries. This methodology represents a potential model for the development of a shared, standardized BLL surveillance method because it could be tailored to meet the unique needs of each DoD service while also maximizing the comparison, replication, and utility of findings. DON blood lead surveillance is modified from the CDC’s standard blood lead surveillance definitions and classifications to best meet its needs using current capabilities. For every calendar year (CY), the EDC identifies elevated blood lead tests among DON pediatric beneficiaries and then verifies in the Armed Forces Health Longitudinal Technology Application (AHLTA) whether or not the provider followed up with the pediatric beneficiary. The EDC then provides a list of names of children that have not had follow-up testing to the Occupational and Environmental Medicine Department of NMCPHC.

METHODS

Laboratory test records with a sample collection date in CYs 2010–2017 (01 January 2010 through 31 December 2017) were obtained from the Composite Health Care System (CHCS) Health Level 7 (HL7)-formatted chemistry laboratory data. The EDC receives a feed of CHCS HL7-formatted chemistry laboratory data and demographic information daily from the Defense Health Agency. These data include all records from MTFs using the CHCS across the DoD. Records were excluded if the sample was not blood, if the unit of measure or the test result could not be determined, or if the results indicated a test was not performed. For example, before CDC updated its BLRV, 122 test results were recorded as “<10.” These results were removed from the final analysis, as it could not be determined if the results were less than the current BLRV of 5 µg/dL. Blood tests with the same sample collection date and date of certified results were excluded from the final sample, as these tests may have been unauthorized point of care tests8; moreover, it would have been highly unlikely for the laboratories to have been able to collect, analyze, and certify a sample on the same day. Zinc protoporphyrin (ZPP) tests, which measure the amount of ZPP in the blood (an indicator of chronic lead exposure) rather than BLL, were also excluded. If more than 1 BLL test result was identified for an individual in a single year, the highest BLL test result for that year was retained.

BLL tests administered to beneficiary children aged less than 18 years at the date and time of sample collection were included. Tests could either have been those completed within an MHS laboratory or those completed at an out-of-network laboratory, after which an MHS provider received and entered the results into AHLTA. Records were analyzed by sponsor service affiliation (Army, Air Force, Marine Corps, Navy, Other), age group (=6 years and 7–17 years), BLL value (<5 µg/dL, 5–9 µg/dL, 10–19 µg/dL, and =20 µg/dL), and geographic region (outside of the U.S., New England, Mid-Atlantic, Eastern North Central, Western North Central, South Atlantic, Eastern South Central, Western South Central, Mountain, Pacific). For sponsor service affiliation and geographic region, the percentage of elevated BLL tests per year was determined.

RESULTS

From 01 January 2010 through 31 December 2017, 169,917 BLL records were retained for analysis (Table 1). The Army tested more pediatric beneficiaries than any other service affiliation during the reporting period. The majority of testing occurred among pediatric beneficiaries aged 6 years or younger across all branches of service.
Overall, the percentage of elevated BLLs among pediatric beneficiaries decreased from 2010 to 2017 (Figure). Less than 1% of pediatric BLL tests in any service were elevated in 2016 and 2017, and no children in the “other” category had an elevated BLL test since 2014.

For CYs 2010–2017, 96.2% of all BLL tests among pediatric beneficiaries were performed in the U.S. and 3.8% were performed elsewhere (Table 2). The percentages of elevated tests (0.8%) were equivalent for the 2 regions. Within the U.S., there were no tests performed in 9 states. Of all BLL tests in the U.S., 58.8% (n=96,089) were from the South Atlantic and Western South Central regions, which accounted for 54.8% (n=702) of all elevated BLLs. The New England region had the highest regional percentage of elevated BLLs (1.4%), but that percentage was based on just 22 elevated BLLs out of 1,561 tests, the lowest number of tests for any region. Among the states, Texas had the highest number of tests (n=29,340), followed by Virginia (n=25,852), but the percentages of tests with elevated BLLs were just 0.5% and 0.7%, respectively. The 5 states with the highest percentages of elevated BLLs (Connecticut, Rhode Island, Pennsylvania, New Hampshire, and Tennessee) accounted for just 22 elevated levels out of only 268 tests performed (Table 2). Among the remaining 37 states (including Washington, DC) that performed tests, the mean percentage positive was 0.9% and the values ranged from 0.3% (Arizona and Colorado) to 1.8% (Kansas and Mississippi).

EDITORIAL COMMENT

Across the DoD, there were 177,061 tests performed between 2010 and 2017 among 162,238 pediatric beneficiaries. Some children may have had multiple tests occurring within the same year or during the totality of the reporting time frame because they had a positive lead questionnaire screen during a doctor’s visit, exhibited clinical symptoms of lead poisoning per the provider’s discretion, or had a prior elevated BLL test. For surveillance purposes, the highest BLL result per year per pediatric beneficiary was kept for analysis, leading to a final observation count of 169,917 BLL tests.

While the percentage of elevated BLL tests varied by sponsor service affiliation, the overall percentage of elevated BLL tests decreased from 2010 to 2017. The number of BLL tests among pediatric beneficiaries varied by state because of the location of fixed MTFs; however, in general, the percentage of elevated BLL tests did not differ between regions inside and outside of the U.S. The number of children tested within each branch of service likely varied because of the difference in the size of the service populations. Percentages of children with elevated BLLs could potentially be affected by the number of children tested within a branch of service or geographic region, whether the children tested were at a lower or higher risk of lead exposure, and the screening recommendations of the MHS.

To adequately identify and address lead exposure risks in their active duty and beneficiary populations, the DON and other DoD services might consider the adoption of a single, standardized method for BLL surveillance. A shared methodology would facilitate comparisons and reduce duplicative effort across the services. Ideally, a shared methodology would also be flexible and responsive to accommodate the challenges related to BLL surveillance in the DoD.

HL7-formatted data are routinely generated within the CHCS at fixed MTFs. HL7-formatted data do not include records from BLL tests without certified results. This may include specimens collected at an MTF that were sent to an out-of-network laboratory for testing. Data from Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care providers also were not included. Records from MHS GENESIS, a new electronic health record that launched in February 2017 at select MHS facilities, were unavailable. Therefore, records from the following MTFs throughout the Pacific Northwest region were not included in this analysis after the launch of MHS GENESIS at their facilities: Fairchild Air Force Base, Madigan Army Medical Center, Naval Health Clinic Oak Harbor, and Naval Hospital Bremerton. Changes in civilian and military testing policies, updates to exposure thresholds, population- or service-specific practices, and data limitations complicate comparisons over time and across services and limit the generalizability of findings.

The HL7-formatted chemistry database consists of nonculture laboratory test results (e.g., polymerase chain reaction and antigen testing). Providers may order a panel when patients present with nonspecific symptoms. If the test name or test results within a panel are not disease-specific, these results may not be captured in search terms used to query the chemistry data. Classifying chemistry tests involves extensive searching of free-text test result fields. It is possible that some test results were misclassified, though validation steps were included to reduce error. Venous and capillary BLL specimen samples are unable to be distinguished in the HL7-formatted chemistry data. Capillary specimen samples for lead testing are generally viewed as less reliable than venous samples because of the potential for lead contamination of specimens during collection that could result in false positives. For surveillance purposes, the EDC reports the highest BLL result per year per pediatric beneficiary and ensures that there is follow-up regarding that elevated test regardless of specimen sample type.

Universal BLL screening is not required in the MHS but is based on the discretion of healthcare practitioners. As a result, the proportion of pediatric beneficiaries with high BLLs may not be a true representation of the BLLs in the pediatric beneficiary population. However, the EDC’s pediatric BLL surveillance methods may provide a starting point for discussions on the value of developing a standardized blood lead surveillance program across all DoD services.

Author affiliations: EpiData Center, Navy and Marine Corps Public Health Center, Portsmouth, VA (Ms. Kotas, Ms. Madden, Ms. Luse, and Ms. Carroll).

Acknowledgments: The authors thank Ashleigh McCabe and Angela Schlein for their support of this analysis and manuscript.

Disclaimers: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government. The authors are employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C., §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C., §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the Navy and Marine Corps Public Health Center administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Navy and Marine Corps Public Health Center.

REFERENCES

1. Centers for Disease Control and Prevention. Health effects of lead exposure. https://www.cdc.gov/nceh/lead/prevention/health-effects.htm. Accessed 05 March 2020.

2. U.S. Preventive Services Task Force. Elevated blood lead levels in children and pregnant women: screening. https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/elevated-blood-lead-levels-in-childhood-and-pregnancy-screening. Accessed 05 March 2020.

3. American Academy of Pediatrics. Detection of lead poisoning. https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/lead-exposure/Pages/Detection-of-Lead-Poisoning.aspx. Accessed 05 March 2020.

4. Advisory Committee on Childhood Lead Poisoning Prevention, Centers for Disease Control and Prevention. Low level lead exposure harms children: a renewed call for primary prevention. https://www.cdc.gov/nceh/lead/ACCLPP/Final_Document_030712.pdf. Accessed 05 March 2020.

5. Centers for Disease Control and Prevention. Preventing lead poisoning in young children. https://wonder.cdc.gov/wonder/prevguid/p0000029/p0000029.asp. Accessed 05 March 2020.

6. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES). https://www.cdc.gov/nceh/lead/data/nhanes.htm. Accessed 05 March 2020.

7. Centers for Disease Control and Prevention. Standard surveillance definitions and classifications. https://www.cdc.gov/nceh/lead/data/casedefinitions-classifications.htm. Accessed 05 March 2020.

8. Department of the Navy, Bureau of Medicine and Surgery. BUMED Instruction 6200.14D. Childhood Lead Poisoning Prevention. 30 August 2017.

Percentage of elevated (=5 µg/dL) pediatric BLL tests, by sponsor service affiliation, 2010–2017

Pediatric BLLs, by sponsor service affiliation and age group, 2010–2017

Number and percentage of elevated (=5 µg/dL) pediatric BLLs, by region and state, 2010–2017

You also may be interested in...

2018 #ColdReadiness Twitter chat recap: Preventing cold weather injuries for service members and their families

Fact Sheet
2/5/2018

To help protect U.S. armed forces, the Armed Forces Health Surveillance Branch (AFHSB) hosted a live #ColdReadiness Twitter chat on Wednesday, January 24th, 12-1:30 pm EST to discuss what service members and their families need to know about winter safety and preventing cold weather injuries as the temperatures drop. This fact sheet documents highlights from the Twitter chat.

Recommended Content:

Medical Surveillance Monthly Report | Winter Safety | Medical and Dental Preventive Care Fitness | Health Readiness

Outbreak of Influenza and Rhinovirus co-circulation among unvaccinated recruits, U.S. Coast Guard Training Center Cape May, NJ, 24 July – 21 August 2016

Infographic
2/5/2018
On 29 July 2016, the U.S. Coast Guard Training Center Cape May (TCCM), NJ, identified an increase in febrile respiratory illness (FRI) among recruits who were unvaccinated against seasonal influenza as a result of the annual vaccine’s expiration. This report characterizes the outbreak and containment measures implemented at TCCM during the outbreak period. In 2016, respiratory infections affected more than 250,000 U.S. service members and comprised approximately 22% of medical encounters among military recruit populations – who are highly susceptible to respiratory infections. Seasonal influenza and rhinovirus are two of the leading respiratory pathogens. During the Surveillance Period: 115 recruits reported respiratory infection symptoms. Pie chart 1 shows the following data: •	41 (35.7%) suspected cases •	74 (64.3%) confirmed cases Among confirmed cases, lab specimens tested positive for: •	Influenza A 34 (45.9%) •	Rhinovirus 28 (37.8%) •	Influenza A and rhinovirus co-infection 11 (14.9%) •	Rhinovirus and adenovirus co-infection 1 (1.4%) Data above depicted in pie chart 2. •	24 July – 6 August, Influenza predominated •	7 August – 20 August, Rhinovirus predominated Although the outbreak significantly affected operations at TCCM, a timely and comprehensive response resulted in containment of the outbreak within 5 weeks. Key Factor for Outbreak Control •	Rapid detection through FRI sentinel surveillance •	Quick decision-making •	Streamlined response by using a single chain of command •	Rapid implementation of both nonpharmaceutical and pharmaceutical interventions Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This report characterizes the outbreak and containment measures implemented at the U.S. Coast Guard Training Center Cape May (TCCM), New Jersey, during a July 24 – August 21, 2016 outbreak period.

Recommended Content:

Health Readiness | Medical Surveillance Monthly Report | Integrated Biosurveillance | Influenza Summary and Reports

Department of Defense Global, Laboratory-based Influenza Surveillance Program’s Influenza vaccine effectiveness estimates and surveillance trends, 2016 – 2017 Influenza Season

Infographic
2/5/2018
Each year, the Department of Defense (DoD) Global, Laboratory-based Influenza Surveillance Program performs surveillance for influenza among service members of the DoD and their dependent family members. In addition to routine surveillance, vaccine effectiveness (VE) studies are performed and results are shared with the Food and Drug Administration, Centers for Disease Control and Prevention, and the World Health Organization for vaccine evaluation. This report documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season VE results. The analysis was performed by the U.S. Air Force School of Aerospace Medicine Epidemiology Laboratory, and the DoD Influenza Surveillance Program staff at Wright-Patterson Air Force Base, OH. FINDINGS: A total of 5,555 specimens were tested from 84 locations: •	2,486 (44.7%) negative •	1,382 (24.9%) influenza A •	1,093 (19.7%) other respiratory pathogens •	443 (8.0%) influenza B •	151 (2.7%) co-infections The predominant influenza strain was A (H3N2), representing 73.8% of all circulating influenza. Pie chart displays this information. Graph showing the numbers and percentages of respiratory specimens positive for influenza viruses, and numbers of influenza viruses identified, by type, by surveillance week, Department of Defense healthcare beneficiaries, 2016 – 2017 influenza season displays. The vaccine effectiveness (VE) for this season was slightly lower than for the 2015 – 2016 season, which had a 63% (95% confidence interval: 53% - 71%) adjusted VE. The adjusted VE for the 2016 – 2017 season was 48% protective against all types of influenza.  Access the full report in the January 2018 MSMR (Vol. 25, No. 1). Go to: www.Health.mil/MSMR

This infographic documents the annual surveillance trends for the 2016 – 2017 influenza season and the end-of-season vaccine effectiveness.

Recommended Content:

Health Readiness | Influenza Summary and Reports | Medical Surveillance Monthly Report | Vaccine-Preventable Diseases | Force Health Protection | Global Health Engagement

Insomnia and motor vehicle accident-related injuries, Active Component, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
Insomnia is the most common sleep disorder in adults and its incidence in the U.S. Armed Forces is increasing. A potential consequence of inadequate sleep is increased risk of motor vehicle accidents (MVAs). MVAs are the leading cause of peacetime deaths and a major cause of non-fatal injuries in the U.S. military members. To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia. After adjustment for multiple covariates, during 2007 – 2016, active component service members with insomnia had more than double the rate of MVA-related injuries, compared to service members without insomnia. Findings:  •	Line graph shows the annual rates of motor vehicle accident-related injuries, active component service members with and without diagnoses of insomnia, U.S. Armed Forces, 2007 – 2016  •	Annual rates of MVA-related injuries were highest in the insomnia cohort in 2007 and 2008, and lowest in 2016 •	There were 5,587 cases of MVA-related injuries in the two cohorts during the surveillance period. •	Pie chart displays the following data: 1,738 (31.1%) in the unexposed cohort and 3,849 (68.9%) in the insomnia cohort The highest overall crude rates of MVA-related injuries were seen in service members who were: •	Less than 25 years old •	Junior enlisted rank/grade •	Armor/transport occupation •	 •	With a history of mental health diagnosis •	With a history of alcohol-related disorders Access the full report in the December 2017 (Vol. 24, No. 12). Go to www.Health.mil/MSMR Image displays a motor vehicle accident.

To examine the relationship between insomnia and motor vehicle accident-related injuries (MVAs) in the U.S. military, this retrospective cohort study compared 2007 – 2016 incidence rates of MVA-related injuries between service members with diagnosed insomnia and service members without a diagnosis of insomnia.

Recommended Content:

Armed Forces Health Surveillance Branch | Health Readiness | Medical Surveillance Monthly Report

Seizures among Active Component service members, U.S. Armed Forces, 2007 – 2016

Infographic
1/25/2018
This retrospective study estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. It also attempted to evaluate the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD. Seizures have been defined as paroxysmal neurologic episodes caused by abnormal neuronal activity in the brain. Approximately one in 10 individuals will experience a seizure in their lifetime. Line graph 1: Annual crude incidence rates of seizures among non-deployed service members, active component, U.S. Armed Forces data •	A total of 16,257 seizure events of all types were identified among non-deployed service members during the 10-year surveillance period. •	The overall incidence rate was 12.9 seizures per 10,000 person-years (p-yrs.) •	There was a decrease in the rate of seizures diagnosed in the active component of the military during the 10-year period. Rates reached their lowest point in 2015 – 9.0 seizures per 10,000 p-yrs. •	Annual rates were markedly higher among service members with recent PTSD and TBI diagnoses, and among those with prior seizure diagnoses. Line graph 2: Annual crude incidence rates of seizures by traumatic brain injury (TBI) and recent post-traumatic stress disorder (PTSD) diagnosis among non-deployed active component service members, U.S. Armed Forces •	For service members who had received both TBI and PTSD diagnoses, seizure rates among the deployed and the non-deployed were two and three times the rates among those with only one of those diagnoses, respectively. •	Rates of seizures tended to be higher among service members who were: in the Army or Marine Corps, Female, African American, Younger than age 30, Veterans of no more than one previous deployment, and in the occupations of combat arms, armor, or healthcare Line graph 3: Annual crude incidence rates of seizures diagnosed among service members deployed to Operation Enduring Freedom, Operation Iraqi Freedom, or Operation New Dawn, U.S. Armed Forces, 2008 – 2016  •	A total of 814 cases of seizures were identified during deployment to operations in Iraq and Afghanistan during the 9-year surveillance period (2008 – 2016). •	For deployed service members, the overall incidence rate was 9.1 seizures per 10,000 p-yrs. •	Having either a TBI or recent PTSD diagnosis alone was associated with a 3-to 4-fold increase in the rate of seizures. •	Only 19 cases of seizures were diagnosed among deployed individuals with a recent PTSD diagnosis during the 9-year surveillance period. •	Overall incidence rates among deployed service members were highest for those in the Army, females, those younger than age 25, junior enlisted, and in healthcare occupations. Access the full report in the December 2017 MSMR (Vol. 24, No. 12). Go to www.Health.mil/MSMR

This infographic documents a retrospective study which estimated the rates of seizures diagnosed among deployed and non-deployed service members to identify factors associated with seizures and determine if seizure rates differed in deployment settings. The study also evaluated the associations between seizures, traumatic brain injury (TBI), and post-traumatic stress disorder (PTSD) by assessing correlations between the incidence rates of seizures and prior diagnoses of TBI and PTSD.

Recommended Content:

Health Readiness | Posttraumatic Stress Disorder | Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Exertional heat injuries pose annual threat to U.S. service members

Article
7/20/2017
Two U.S. service members perform duties in warm weather where they may be exposed to extreme heat conditions and a higher risk of heat illness.

Exertional heat injuries pose annual threat to U.S. service members, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report | Summer Safety

Heat Illnesses by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on heat illnesses by location during a five-year surveillance period from 2012 through 2016. 11,967 heat-related illnesses were diagnosed at more than 250 military installations and geographic locations worldwide. Three Army Installations accounted for close to one-third of all heat illnesses during the period.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Demographic and Military Traits of Service Members Diagnosed as Traumatic Brain Injury Cases

Fact Sheet
3/30/2017

This fact sheet provides details on the demographic and military traits of service members diagnosed as traumatic brain injury (TBI) cases during a 16-year surveillance period from 2001 through 2016, a total of 276,858 active component service members received first-time diagnoses of TBI - a structural alteration of the brain or physiological disruption of brain function caused by an external force.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

Rhabdomyolysis by Location, Active Component, U.S. Armed Forces, 2012-2016 Fact Sheet

Fact Sheet
3/30/2017

This fact sheet provides details on Rhabdomyolysis by location for active component, U.S. Armed Forces during a five-year surveillance period from 2012 through 2016. The medical treatment facilities at nine installations diagnosed at least 50 cases each and, together approximately half (49.9%) of all diagnosed cases.

Recommended Content:

Armed Forces Health Surveillance Branch | Medical Surveillance Monthly Report

2016 marks first year of zero combat amputations since the start of the Afghan, Iraq wars

Article
3/28/2017
An analysis by the Medical Surveillance Monthly Report recently reported 2016 marks the first year without combat amputations since the wars in Afghanistan and Iraq began. U.S. Armed Forces are at risk for traumatic amputations of limbs during combat deployments and other work hazards. (DoD photo)

An analysis by the Medical Surveillance Monthly Report (MSMR) recently reported 2016 marks the first year of zero combat amputations since the wars in Afghanistan and Iraq began.

Recommended Content:

Medical Surveillance Monthly Report | Epidemiology and Analysis

Cold injuries among active duty U.S. service members drop to lowest level since winter 2011–2012

Article
1/23/2017
U.S. service members often perform duties in cold weather climates where they may be exposed to frigid conditions and possible injury.

Cold injuries among active duty U.S. service members drop to the lowest level since winter 2011-2012, according to a study published in Defense Health Agency’s Armed Forces Health Surveillance Branch (AFHSB) peer-reviewed journal, the Medical Surveillance Monthly Report.

Recommended Content:

Armed Forces Health Surveillance Branch | Epidemiology and Analysis | Medical Surveillance Monthly Report | Winter Safety
<< < ... 11 12 13 > >> 
Showing results 181 - 191 Page 13 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.