Back to Top Skip to main content Skip to sub-navigation

Blood Lead Level Surveillance Among Pediatric Beneficiaries in the Military Health System, 2010–2017

U.S. Air Force Staff Sgt. Katie Duff, a medical technician with the 193rd Special Operations Wing's Medical Group, pricks the finger of brave 23-month old Kahia Inman, while his mother Malia Duvauchelle holds him during a free health screening. (U.S. Air Force photo by Tech. Sgt. Culeen Shaffer) U.S. Air Force Staff Sgt. Katie Duff, a medical technician with the 193rd Special Operations Wing's Medical Group, pricks the finger of brave 23-month old Kahia Inman, while his mother Malia Duvauchelle holds him during a free health screening. (U.S. Air Force photo by Tech. Sgt. Culeen Shaffer)

Recommended Content:

Medical Surveillance Monthly Report

ABSTRACT

The EpiData Center (EDC) has provided routine blood lead level (BLL) surveillance for Department of Defense (DoD) pediatric beneficiaries since 2011. Data for this study were collected and compiled from raw laboratory test records obtained from the Composite Health Care System Health Level 7 (HL7)-formatted chemistry data, allowing an overview of the number of tests performed and the number of elevated results. Between 2010 and 2017, there were 177,061 tests performed among 162,238 pediatric beneficiaries tested. Using only the highest test result per year for each individual, 169,917 tests were retained for analysis, of which 1,334 (0.79%) test results were considered elevated. The percentage of children with elevated BLLs generally decreased over the time period for children of every service affiliation. All tests throughout this time frame were evaluated using current standards and the protocol followed by the Centers for Disease Control and Prevention and the Department of the Navy (DON). The adoption of a standardized BLL surveillance methodology across the DoD supports a cohesive approach to an evolving public health surveillance topic.

WHAT ARE THE NEW FINDINGS?   

The EDC’s BLL surveillance program established a methodology for lead exposure surveillance among DoD pediatric beneficiaries, providing critical data and valuable historical context for the interpretation of findings. Between 2010 and 2017, the percentage of children with elevated BLLs generally remained below 1.2%, and by 2017, the overall percentage was 0.5% for all children tested.

WHAT IS THE IMPACT ON READINESS AND FORCE HEALTH PROTECTION?

Blood lead surveillance of DON pediatric beneficiaries is required under Bureau of Medicine and Surgery instruction 6200.14D. The EDC’s methodology for BLL surveillance may be leveraged for consistent BLL surveillance across the DoD.

BACKGROUND

Robust lead exposure surveillance is especially important in pediatric populations. There is no safe blood lead level (BLL) for children; even very low BLLs can increase the risk of harmful hematologic and neurologic effects.1 The U.S. Preventive Services Task Force concluded there is currently insufficient evidence to recommend BLL screening of asymptomatic children 5 years of age and younger.2 The Military Health System (MHS) does not require universal BLL screening for pediatric beneficiaries, but providers are directed to consider assessing the risk of lead exposure among children between 6 months and 6 years of age by parental questionnaire, in accordance with recommendations from the American Academy of Pediatrics.3 Children who screen positive on this questionnaire should have their BLLs tested. Additionally, clinical suspicion of lead exposure or poisoning should prompt a blood lead test. Providers should ensure the performance of follow-up care for any child with an elevated BLL, and retesting is recommended to confirm an initial elevated BLL and to monitor the decline in BLLs following treatment.4

Before 2012, a BLL of 10 µg/dL or greater was considered to be an elevated test result.In 2012, the Centers for Disease Control and Prevention (CDC) updated the guidelines for the blood lead reference value (BLRV) to 5 µg/dL or greater, based on National Health and Nutrition Examination Survey results showing declining BLLs in children.6 For an elevated BLL (5 µg/dL or greater) to be considered “confirmed,” CDC requires 1 elevated result from a venous blood test or 2 elevated results from capillary blood tests within 12 weeks.7 Traditional blood lead laboratory test results are the preferred test for Department of the Navy (DON) BLL surveillance. Rapid testing results, like finger-stick tests obtained by MHS providers at the point of care, were used for BLL surveillance purposes until 30 August 2017 when the Bureau of Medicine and Surgery (BUMED) released an instruction stating point-of-care blood testing devices were no longer authorized for compliance with the childhood lead poisoning prevention program in the DON.8

Since 2011, the EpiData Center (EDC) at the Navy and Marine Corps Public Health Center (NMCPHC) has conducted routine BLL surveillance among Department of Defense (DoD) pediatric beneficiaries on a quarterly basis. An annual report based on data at the military treatment facility (MTF) level is also prepared on DON pediatric beneficiaries at the request of the Occupational and Environmental Medicine Department of NMCPHC. All surveillance reports are available to qualified DoD personnel upon request. The EDC’s BLL surveillance program provides critical data and valuable historical context for evaluating lead exposure among DoD pediatric beneficiaries.

This article describes the EDC’s methodology for BLL surveillance in DoD pediatric beneficiaries. This methodology represents a potential model for the development of a shared, standardized BLL surveillance method because it could be tailored to meet the unique needs of each DoD service while also maximizing the comparison, replication, and utility of findings. DON blood lead surveillance is modified from the CDC’s standard blood lead surveillance definitions and classifications to best meet its needs using current capabilities. For every calendar year (CY), the EDC identifies elevated blood lead tests among DON pediatric beneficiaries and then verifies in the Armed Forces Health Longitudinal Technology Application (AHLTA) whether or not the provider followed up with the pediatric beneficiary. The EDC then provides a list of names of children that have not had follow-up testing to the Occupational and Environmental Medicine Department of NMCPHC.

METHODS

Laboratory test records with a sample collection date in CYs 2010–2017 (01 January 2010 through 31 December 2017) were obtained from the Composite Health Care System (CHCS) Health Level 7 (HL7)-formatted chemistry laboratory data. The EDC receives a feed of CHCS HL7-formatted chemistry laboratory data and demographic information daily from the Defense Health Agency. These data include all records from MTFs using the CHCS across the DoD. Records were excluded if the sample was not blood, if the unit of measure or the test result could not be determined, or if the results indicated a test was not performed. For example, before CDC updated its BLRV, 122 test results were recorded as “<10.” These results were removed from the final analysis, as it could not be determined if the results were less than the current BLRV of 5 µg/dL. Blood tests with the same sample collection date and date of certified results were excluded from the final sample, as these tests may have been unauthorized point of care tests8; moreover, it would have been highly unlikely for the laboratories to have been able to collect, analyze, and certify a sample on the same day. Zinc protoporphyrin (ZPP) tests, which measure the amount of ZPP in the blood (an indicator of chronic lead exposure) rather than BLL, were also excluded. If more than 1 BLL test result was identified for an individual in a single year, the highest BLL test result for that year was retained.

BLL tests administered to beneficiary children aged less than 18 years at the date and time of sample collection were included. Tests could either have been those completed within an MHS laboratory or those completed at an out-of-network laboratory, after which an MHS provider received and entered the results into AHLTA. Records were analyzed by sponsor service affiliation (Army, Air Force, Marine Corps, Navy, Other), age group (=6 years and 7–17 years), BLL value (<5 µg/dL, 5–9 µg/dL, 10–19 µg/dL, and =20 µg/dL), and geographic region (outside of the U.S., New England, Mid-Atlantic, Eastern North Central, Western North Central, South Atlantic, Eastern South Central, Western South Central, Mountain, Pacific). For sponsor service affiliation and geographic region, the percentage of elevated BLL tests per year was determined.

RESULTS

From 01 January 2010 through 31 December 2017, 169,917 BLL records were retained for analysis (Table 1). The Army tested more pediatric beneficiaries than any other service affiliation during the reporting period. The majority of testing occurred among pediatric beneficiaries aged 6 years or younger across all branches of service.
Overall, the percentage of elevated BLLs among pediatric beneficiaries decreased from 2010 to 2017 (Figure). Less than 1% of pediatric BLL tests in any service were elevated in 2016 and 2017, and no children in the “other” category had an elevated BLL test since 2014.

For CYs 2010–2017, 96.2% of all BLL tests among pediatric beneficiaries were performed in the U.S. and 3.8% were performed elsewhere (Table 2). The percentages of elevated tests (0.8%) were equivalent for the 2 regions. Within the U.S., there were no tests performed in 9 states. Of all BLL tests in the U.S., 58.8% (n=96,089) were from the South Atlantic and Western South Central regions, which accounted for 54.8% (n=702) of all elevated BLLs. The New England region had the highest regional percentage of elevated BLLs (1.4%), but that percentage was based on just 22 elevated BLLs out of 1,561 tests, the lowest number of tests for any region. Among the states, Texas had the highest number of tests (n=29,340), followed by Virginia (n=25,852), but the percentages of tests with elevated BLLs were just 0.5% and 0.7%, respectively. The 5 states with the highest percentages of elevated BLLs (Connecticut, Rhode Island, Pennsylvania, New Hampshire, and Tennessee) accounted for just 22 elevated levels out of only 268 tests performed (Table 2). Among the remaining 37 states (including Washington, DC) that performed tests, the mean percentage positive was 0.9% and the values ranged from 0.3% (Arizona and Colorado) to 1.8% (Kansas and Mississippi).

EDITORIAL COMMENT

Across the DoD, there were 177,061 tests performed between 2010 and 2017 among 162,238 pediatric beneficiaries. Some children may have had multiple tests occurring within the same year or during the totality of the reporting time frame because they had a positive lead questionnaire screen during a doctor’s visit, exhibited clinical symptoms of lead poisoning per the provider’s discretion, or had a prior elevated BLL test. For surveillance purposes, the highest BLL result per year per pediatric beneficiary was kept for analysis, leading to a final observation count of 169,917 BLL tests.

While the percentage of elevated BLL tests varied by sponsor service affiliation, the overall percentage of elevated BLL tests decreased from 2010 to 2017. The number of BLL tests among pediatric beneficiaries varied by state because of the location of fixed MTFs; however, in general, the percentage of elevated BLL tests did not differ between regions inside and outside of the U.S. The number of children tested within each branch of service likely varied because of the difference in the size of the service populations. Percentages of children with elevated BLLs could potentially be affected by the number of children tested within a branch of service or geographic region, whether the children tested were at a lower or higher risk of lead exposure, and the screening recommendations of the MHS.

To adequately identify and address lead exposure risks in their active duty and beneficiary populations, the DON and other DoD services might consider the adoption of a single, standardized method for BLL surveillance. A shared methodology would facilitate comparisons and reduce duplicative effort across the services. Ideally, a shared methodology would also be flexible and responsive to accommodate the challenges related to BLL surveillance in the DoD.

HL7-formatted data are routinely generated within the CHCS at fixed MTFs. HL7-formatted data do not include records from BLL tests without certified results. This may include specimens collected at an MTF that were sent to an out-of-network laboratory for testing. Data from Purchased CareThe TRICARE Health Program is often referred to as purchased care. It is the services we “purchase” through the managed care support contracts.purchased care providers also were not included. Records from MHS GENESIS, a new electronic health record that launched in February 2017 at select MHS facilities, were unavailable. Therefore, records from the following MTFs throughout the Pacific Northwest region were not included in this analysis after the launch of MHS GENESIS at their facilities: Fairchild Air Force Base, Madigan Army Medical Center, Naval Health Clinic Oak Harbor, and Naval Hospital Bremerton. Changes in civilian and military testing policies, updates to exposure thresholds, population- or service-specific practices, and data limitations complicate comparisons over time and across services and limit the generalizability of findings.

The HL7-formatted chemistry database consists of nonculture laboratory test results (e.g., polymerase chain reaction and antigen testing). Providers may order a panel when patients present with nonspecific symptoms. If the test name or test results within a panel are not disease-specific, these results may not be captured in search terms used to query the chemistry data. Classifying chemistry tests involves extensive searching of free-text test result fields. It is possible that some test results were misclassified, though validation steps were included to reduce error. Venous and capillary BLL specimen samples are unable to be distinguished in the HL7-formatted chemistry data. Capillary specimen samples for lead testing are generally viewed as less reliable than venous samples because of the potential for lead contamination of specimens during collection that could result in false positives. For surveillance purposes, the EDC reports the highest BLL result per year per pediatric beneficiary and ensures that there is follow-up regarding that elevated test regardless of specimen sample type.

Universal BLL screening is not required in the MHS but is based on the discretion of healthcare practitioners. As a result, the proportion of pediatric beneficiaries with high BLLs may not be a true representation of the BLLs in the pediatric beneficiary population. However, the EDC’s pediatric BLL surveillance methods may provide a starting point for discussions on the value of developing a standardized blood lead surveillance program across all DoD services.

Author affiliations: EpiData Center, Navy and Marine Corps Public Health Center, Portsmouth, VA (Ms. Kotas, Ms. Madden, Ms. Luse, and Ms. Carroll).

Acknowledgments: The authors thank Ashleigh McCabe and Angela Schlein for their support of this analysis and manuscript.

Disclaimers: The views expressed in this article are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the U.S. Government. The authors are employees of the U.S. Government. This work was prepared as part of their official duties. Title 17, U.S.C., §105 provides that copyright protection under this title is not available for any work of the U.S. Government. Title 17, U.S.C., §101 defines a U.S. Government work as a work prepared by a military service member or employee of the U.S. Government as part of that person’s official duties. This research was supported in part by an appointment to the Postgraduate Research Participation Program at the Navy and Marine Corps Public Health Center administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the U.S. Department of Energy and the Navy and Marine Corps Public Health Center.

REFERENCES

1. Centers for Disease Control and Prevention. Health effects of lead exposure. https://www.cdc.gov/nceh/lead/prevention/health-effects.htm. Accessed 05 March 2020.

2. U.S. Preventive Services Task Force. Elevated blood lead levels in children and pregnant women: screening. https://www.uspreventiveservicestaskforce.org/Page/Document/UpdateSummaryFinal/elevated-blood-lead-levels-in-childhood-and-pregnancy-screening. Accessed 05 March 2020.

3. American Academy of Pediatrics. Detection of lead poisoning. https://www.aap.org/en-us/advocacy-and-policy/aap-health-initiatives/lead-exposure/Pages/Detection-of-Lead-Poisoning.aspx. Accessed 05 March 2020.

4. Advisory Committee on Childhood Lead Poisoning Prevention, Centers for Disease Control and Prevention. Low level lead exposure harms children: a renewed call for primary prevention. https://www.cdc.gov/nceh/lead/ACCLPP/Final_Document_030712.pdf. Accessed 05 March 2020.

5. Centers for Disease Control and Prevention. Preventing lead poisoning in young children. https://wonder.cdc.gov/wonder/prevguid/p0000029/p0000029.asp. Accessed 05 March 2020.

6. Centers for Disease Control and Prevention. National Health and Nutrition Examination Survey (NHANES). https://www.cdc.gov/nceh/lead/data/nhanes.htm. Accessed 05 March 2020.

7. Centers for Disease Control and Prevention. Standard surveillance definitions and classifications. https://www.cdc.gov/nceh/lead/data/casedefinitions-classifications.htm. Accessed 05 March 2020.

8. Department of the Navy, Bureau of Medicine and Surgery. BUMED Instruction 6200.14D. Childhood Lead Poisoning Prevention. 30 August 2017.

Percentage of elevated (=5 µg/dL) pediatric BLL tests, by sponsor service affiliation, 2010–2017

Pediatric BLLs, by sponsor service affiliation and age group, 2010–2017

Number and percentage of elevated (=5 µg/dL) pediatric BLLs, by region and state, 2010–2017

You also may be interested in...

Prevalence of Glucose-6-Phosphate Dehydrogenase Deficiency, U.S. Armed Forces, May 2004–September 2018

Article
12/1/2019
Staff Sgt. Cory Gage, 23d Medical Support Squadron medical laboratory technician, places a blood specimen in an automated hematology analyzer, Aug. 29, 2017, at Moody Air Force Base, Ga. Moody’s lab technicians process blood to check for a variety of cell abnormalities from infections to cancer. (U.S. Air Force photo by Airman 1st Class Erick Requadt)

Recommended Content:

Medical Surveillance Monthly Report

Case Report: Hansen’s Disease in an Active Duty Soldier Presenting with Type 1 Reversal Reaction

Article
12/1/2019
Ulcer along the interspace between the patient’s right index and middle fingers. Photograph courtesy of Brooke Army Medical Center Medical Photography.

Recommended Content:

Medical Surveillance Monthly Report

Update: Gallbladder Disease and Cholecystectomies, Active Component, U.S. Armed Forces, 2014–2018

Article
12/1/2019
Hansen's disease nerve

Recommended Content:

Medical Surveillance Monthly Report

Positive Predictive Value of an Algorithm Used for Cancer Surveillance in the U.S. Armed Forces

Article
12/1/2019
Naval Hospital Jacksonville physicians Lt. Catherine Perrault, right, and Lt. Joseph Sapoval review patient charts at the hospital’s labor and delivery unit. Perrault, from Orlando, Florida, rendered aid at the scene of an accident involving a train and a school bus on Sept. 27, 2018. Perrault recently returned from a deployment to the Middle East where she served as the general medical officer aboard the amphibious assault ship USS Iwo Jima (LPH 2). During the deployment, she provided routine, acute, and critical care. (U.S. Navy photo by Jacob Sippel/Released)

Recommended Content:

Medical Surveillance Monthly Report

Case Report: Tick-borne Encephalitis Virus Infection in Beneficiaries of the U.S. Military Healthcare System in Southern Germany

Article
11/1/2019
A paratrooper with 1st Squadron, 91st Cavalry Regiment, 173rd Airborne Brigade lies concealed in a forest and observes his target during a combined sniper exercise with the British Army's 1st Battalion, Royal Irish Regiment as part of Exercise Wessex Storm at the 7th Army Joint Multinational Training Command's Grafenwoehr Training Area, Germany, July 30, 2015. Wessex Storm is an annual maneuver exercise for British forces, integrating NATO allies and partners. (U.S. Army photo by Visual Information Specialist Gertrud Zach/released)

Recommended Content:

Medical Surveillance Monthly Report

Tick-borne encephalitis surveillance in U.S. military service members and beneficiaries, 2006–2018

Article
11/1/2019
©ECDC/Photo by Guy Hendrickx

Recommended Content:

Medical Surveillance Monthly Report

Editorial: Mitigating the Risk of Disease From Tick-borne Encephalitis in U.S. Military Populations

Article
11/1/2019
Female Ixodes ricinus Tick ©ECDC/Photo by Francis Schaffner

Recommended Content:

Medical Surveillance Monthly Report

Update: Cold Weather Injuries, Active and Reserve Components, U.S. Armed Forces, July 2014–June 2019

Article
11/1/2019
A U.S. Marine with Marine Rotational Force-Europe (MRF-E) 19.1 maintains a defensive security position during Exercise Winter Warrior in Haltdalen, Norway, Dec. 5, 2018. The three-week exercise tested the Marines' abilities to adapt to harsh weather conditions, move across long distances in the snow and push themselves to complete the mission despite austere situations. (U.S. Marine Corps photo by Cpl. Elijah Abernathy/Released)

Recommended Content:

Medical Surveillance Monthly Report

Animal Bites and Rabies Post-exposure Prophylaxis, Active and Reserve Components, U.S. Armed Forces, 2011–2018.

Article
10/1/2019
Big Brown Bat stock photo (iStock.com)

Animal Bites and Rabies Post-exposure Prophylaxis, Active and Reserve Components, U.S. Armed Forces, 2011–2018

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Trends in Opioid Prescription Fills Among U.S. Military Service Members During Fiscal Years 2007–2017

Article
10/1/2019
U.S. Air Force Tech Sgt. Ryan Marr, 18th Medical Group pharmacy craftsman, processes prescriptions, June 8, 2018, at Kadena Air Base, Japan. The pharmacy processes and fills prescriptions for hundreds of different medical needs. (U.S. Air Force photo by Staff Sergeant Jessica H. Smith) Merriam/Released)

Recommended Content:

Medical Surveillance Monthly Report

Surveillance Snapshot: Influenza Immunization Among U.S. Armed Forces Healthcare Workers, August 2014–April 2019

Article
10/1/2019
181129-N-GR847-3000 ARABIAN GULF (Nov. 29, 2018) Hospitalman Jay Meadows, from Weaver, Ala., administers an influenza vaccine to a Sailor during a regularly scheduled deployment of the Essex Amphibious Ready Group (ARG) and 13th Marine Expeditionary Unit (MEU). The Essex ARG/13th MEU is flexible and persistent Navy-Marine Corps team deployed to the U.S. 5th Fleet area of operations in support of naval operations to ensure maritime stability and security in the Central Region, connecting to the Mediterranean and the Pacific through the western Indian Ocean and three strategic choke points. (U.S. Navy photo by Mass Communication Specialist 3rd Class Reymundo A. Villegas III)

Recommended Content:

Medical Surveillance Monthly Report

Measles, Mumps, Rubella, and Varicella Among Service Members and Other Beneficiaries of the Military Health System, 1 January 2016–30 June 2019

Article
10/1/2019
U.S. Air Force Airmen of the 163d Attack Wing line up to  receive a flu vaccine at March Air Reserve Base, California, Nov. 4, 2018. The flu vaccine is an annual requirement for military members to help curb the spread of the flu and limit its impact within the unit. (U.S. Air National Guard photo by Tech. Sgt. Julianne M. Showalter)

Recommended Content:

Medical Surveillance Monthly Report

Incident and Recurrent Cases of Central Serous Chorioretinopathy, Active Component, U.S. Armed Forces, 2001–2018

Article
9/1/2019
A phoropter is an instrument used to determine an individual’s eyeglass prescription by measuring the eye’s refractive error and switching through various lens until the persons vision is normal. (U.S. Air Force photo by Airman Dennis Spain)

Recommended Content:

Medical Surveillance Monthly Report

Editorial: The Department of Defense/Veterans Affairs Vision Center of Excellence

Article
9/1/2019
U.S. Army Spc. Angel Gomez, right, assigned to Charlie Company, 173rd Brigade Support Battalion, wraps the eye of a fellow Soldier with a simulated injury, for a training exercise as part of exercise Saber Junction 16 at the U.S. Army’s Joint Multinational Readiness Center in Hohenfels, Germany, April 5, 2016. Saber Junction is a U.S. Army Europe-led exercise designed to prepare U.S., NATO and international partner forces for unified land operations. The exercise was conducted March 31-April 24. (U.S. Army photo by Pfc. Joshua Morris)

Recommended Content:

Medical Surveillance Monthly Report

Absolute and Relative Morbidity Burdens Attributable to Ocular and Vision-Related Conditions, Active Component, U.S. Armed Forces, 2018

Article
9/1/2019
Senior Airman Breanna Daniels, 559th Medical Group optometry technician, takes images of Tech. Sgt. Stephanie Edmiston, 559th MDG trainee health flight chief, during an eye exam Oct. 19 at the Reid Clinic on Joint Base San Antonio-Lackland, Texas. The 559th MDG is home to the largest optometry and public health flight in the Department of Defense; the DOD's first military training consultation service. (U.S. Air Force photo/Staff Sgt. Kevin Iinuma)

Recommended Content:

Medical Surveillance Monthly Report
<< < 1 2 3 4 5  ... > >> 
Showing results 61 - 75 Page 5 of 13

DHA Address: 7700 Arlington Boulevard | Suite 5101 | Falls Church, VA | 22042-5101

Some documents are presented in Portable Document Format (PDF). A PDF reader is required for viewing. Download a PDF Reader or learn more about PDFs.